Skip to main content
Log in

Numerical study of electroosmosis-induced alterations in peristaltic pumping of couple stress hybrid nanofluids through microchannel

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

This paper presents a computational modeling approach to analyze the peristaltic pumping of couple stress hybrid nanofluids regulated by the electroosmosis mechanism through a microchannel. The effects of applied magnetic field, Joule heating and buoyancy have also been computed. In this analytical model, water-based titanium dioxide (TiO2) and silver (Ag) hybrid nanofluids have been considered. For more relevant physical problem, the axial velocity slip and thermal slip conditions have also been introduced. The nonlinear differential equations are simplified by considering the Hückel–Debye approximations as well as lubrication theory, and then the equations have been solved numerically by Mathematica 10 software via the NDsolve commands. The pertinent influences of key parameters on the axial velocity, nanoparticle temperature, Nusselt number and streamlines in the microchannel have been visualized graphically. It is observed that an increase in the thermal Grashof number produces a maximum axial velocity, and temperature of nanoparticles for both water–titanium dioxide and water–silver nanofluids. The maximum axial velocity and nanoparticle temperature occur in water–titanium dioxide as compared with water–silver. The outcomes of this model shall be very useful in the designs of smart electro-peristaltic pumps for thermal systems and drug delivery systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

\(B_{0}\) :

Magnetic field strength

\(c_{\text{p p}}\) :

Specific heat of nanoparticle

\(E_{\xi }\) :

Axially applied electric field

\(k_{\text{B}}\) :

Boltzmann constant

\(\bar{n}_{ + }\) and \(\bar{n}_{ - }\) :

Positive and negative ions having bulk concentration

\(\,\bar{p}\) :

Dimensional pressure

\(n_{0}\) :

Bulk concentration

\(\,\bar{T}\) :

Dimensional temperature

z :

Valence

\(\mu_{\text{eff}}\) :

Effective viscosity

\(\left( {\rho \beta } \right)_{\text{eff}}\) :

Effective thermal expansion of the nanofluid

\(\rho_{\text{f}}\) :

Density of fluid

\(\varphi\) :

Nanoparticle volume fraction

\(\beta_{\text{p}}\) :

Nanoparticle thermal expansion coefficient

\(\bar \kappa_{\text{p}}\) :

Thermal conductivity of nanoparticle

\(\bar{a}\) :

Amplitudes of walls

d :

Width of the channel

\(\rho_{\text{e}}\) :

Net charge density of the electrolyte

Re:

Reynolds number

Gr:

Thermal Grashof number

Pr:

Prandtl number

Br:

Brinkman number

\(\beta\) :

Joule-heating parameter

\(c_{\text{p f}}\) :

Specific heat of fluid

e :

Elementary charge valence

\(g\) :

Acceleration due to gravity

\(n\) :

The shape factor of nanoparticles

\(T_{\text{m}} \left( { = \frac{{T_{0} + T_{1} }}{2}} \right)\) :

Mean temperature

\(\,\bar{t}\) :

Dimensional time

\(T_{\text{v}}\) :

Absolute temperature

\(\bar{u},\,\bar{v}\) :

Velocity along \(\bar{\xi }\) and \(\bar{\eta }\) directions

\(\rho_{\text{eff}}\) :

Effective density

\(\,\sigma\) :

Electrical conductivity

\(\bar\kappa_{\text{eff}}\) :

Effective thermal conductivity and couple stress viscosity

\(\rho_{\text{p}}\) :

Density of nanoparticle

\(\beta_{\text{f}}\) :

Fluid thermal expansion coefficient

\(\bar\kappa_{\text{f}}\) :

Thermal conductivity of fluid

\(\mu_{\text{f}}\) :

Dynamic viscosity of fluid

\(\lambda\) :

Wavelength

\(\varepsilon_{\text{ef}}\) :

Dielectric constant

\(\delta\) :

Wave number

\(\gamma\) :

Couple-stress parameter

H:

Hartmann number

Ec:

Eckert number

Uhs:

Helmholtz–Smoluchowski velocity

\(\psi\) :

Stream function

References

  1. Y Bar-cohen and Z Chatig, Piezoelectrically-Actuated Miniature Peristaltic Pump (California: Caltech- Jet Propulsion Laboratory (1991)

    Google Scholar 

  2. M Mishra and A Ramachandra Rao J. Biomech. 38 779 (2004)

    Article  Google Scholar 

  3. K K Bokka, E C Jesudason, D Warburton and S R Lubkin J. Theor. Biol. 382 378 (2015)

    Article  ADS  Google Scholar 

  4. J B Shukla, P Chandra, R Sharma and G Radhakrishnamacharya J. Biomech. 21 947 (1988)

    Article  Google Scholar 

  5. A S Farina, L Fusi, A Fasano, A Ceretain and F Rosso Int. J. Eng. Sci. 107 (1–12) (2016)

    Article  Google Scholar 

  6. E V Mangan, D A Kingsley, R D Quinn and H J Chiel Proc. IEEE Int. Conf. Robotics and Automation (ICRA) 347 (2002)

  7. K J Quillin J. Exp. Biol .202 661 (1999)

  8. S Seok, C D Onal, R Wood, D Rus and S Kim Proc. IEEE Int. Conf. Robotics and Automation (ICRA) (2010)

  9. H S Lew, Y C Fung and C B Lowenstein J. Biomech. 4 297 (1971)

    Article  Google Scholar 

  10. K S Mekheimer. Appl. Math. Comput. 153 763 (2004)

    MathSciNet  Google Scholar 

  11. Y C Fung and F C P Yin J. Fluid Mech. 47 93 (1971)

    Article  ADS  Google Scholar 

  12. A Afsar Khan, R Ellahi and K Vafai Adv. Math. Phys. 2012 (2012)

  13. K Ramesh and M Devakar J. Magn. Magn. Mater. 394 335 (2015)

    Article  ADS  Google Scholar 

  14. K Ramesh and M Devakar J. Fluids 2015 (2015)

  15. D Tripathi Trans. Porous Med. 92 559 (2012)

    Article  Google Scholar 

  16. D Tripathi and O A Bég J. Mech. Med. Bio. 12 1250088 (2012)

    Article  Google Scholar 

  17. D Tripathi and O A Beg Math. Biosci. 246 72 (2013)

  18. W Ehrfeld Electrochim. Acta 48 2857 (2003)

  19. J Jang and S S Lee Sensor Actuat. A: Phys. 80 84 (2000)

    Article  Google Scholar 

  20. S Chakraborty and D Paul J. Phys. D: Appl. Phys. 39 5364 (2006)

    Article  ADS  Google Scholar 

  21. Y J Jian and L Chang AIP Adv. 5 057121 (2015)

    Article  ADS  Google Scholar 

  22. Y J Jian, D Q Si, L Chang and Q S Liu Chem. Eng. Sci. 134 12 (2015)

    Article  Google Scholar 

  23. J Escandón, F Santiago, O Bautista and F Méndez Int. J. Therm. Sci. 86 246 (2014)

    Article  Google Scholar 

  24. G Prakash, J Chakraborty, A Bandopadhyay and S Chakraborty.Microvasc. Res. 103 41 (2016)

    Article  Google Scholar 

  25. D Tripathi, B Abhilesh, J Ravinder, O Anwar Bég and A Kumar Tiwari Microvasc. Res. 114 65 (2017)

    Article  Google Scholar 

  26. D Tripathi, A Yadav and O Anwar Bég Eur. Phys. J. Plus 132 173 (2017)

    Article  Google Scholar 

  27. K Venugopal Reddy, O D Makinde and M Gnaneswara Reddy Indian J..Phys. 92 1439 (2018)

  28. J Prakash, Ashish Sharma and D Tripathi. Pramana-J. Phys. 94 4 (2020)

    Article  ADS  Google Scholar 

  29. D Tripathi, S Bhushan and O Anwar Bég Alex. Eng. J. 57 1349 (2018)

    Article  Google Scholar 

  30. D Tripathi, R Jhorar, O A Be’g and S Shaw Meccanica 53 2079 (2018)

    Article  MathSciNet  Google Scholar 

  31. Bhatti, M. M., A. Zeeshan, D. Tripathi and R. Ellahi. Indian J. Phys. 92 423 (2018)

    Article  ADS  Google Scholar 

  32. Jhorar, R., D. Tripathi, M. M. Bhatti and R. Ellahi Indian J. Phys. 92 1229 (2018)

    Article  ADS  Google Scholar 

  33. V K Narla and D Tripathi Microvasc. Res. 123 25 (2019)

    Article  Google Scholar 

  34. S Chakraborty Electrophoresis 40 180 (2019)

    Article  Google Scholar 

  35. X Cao et al Adv. Functi. Mater. 1807173 (2019)

  36. A Pendleton, P Kar, S Kundu, S Houssamy and H Liang. J. Tribol. 132 031201 (2010)

    Article  Google Scholar 

  37. A Seyfoddin, J Shaw and R Al-Kassas Drug Deliv. 17 467 (2010)

    Article  Google Scholar 

  38. M Mikityuk Probl. Ecol. Med. 15 42 (2011)

    Google Scholar 

  39. S P Kambhampati and R M Kannan J. Ocul. Pharmacol. Ther. 29 151 (2013)

    Article  Google Scholar 

  40. P Muthuraman, K Ramkumar and D H Kim Appl. Biochem. Biotechnol. 174 2851 (2014)

    Article  Google Scholar 

  41. Q Wu, H Zhang, M Chen, Y Zhang, J Huang, Z Xu and W Wang J. Biomed. Mater. Res. B Appl. Biomater. 103 908 (2014)

  42. D Archana, B K Singh, J Dutta, P Dutta, P V P Chitosan Int. J. Biol. Macromol. 73 49 (2015)

    Article  Google Scholar 

  43. A Sohail, Z Ahmad, O A Bég, S Arshad and L Sherin Bull. Cancer 104 452 (2017)

  44. N S Akbar Appl. Nanosci. 4 663 (2014)

    Article  ADS  Google Scholar 

  45. R Ellahi, A Riaz, and S Nadeem Appl. Nanosci. 4 753 (2014)

    Article  ADS  Google Scholar 

  46. N S Akbar, M Raza and R Ellahi Appl. Nanosci. 6 359 (2016)

    Article  ADS  Google Scholar 

  47. M Kothandapani and J Prakash Appl. Nanosci. 6 323 (2016)

    Article  ADS  Google Scholar 

  48. S Noreen, M M Rashidi and M Qasim Appl. Nanosci. 7 193 (2017)

    Article  ADS  Google Scholar 

  49. S Farooq, M I Khan, M Waqas, T Hayat and A. Alsaedi Appl. Nanosci. 10 347 (2020)

    Article  ADS  Google Scholar 

  50. D Tripathi, ASharma, O Anwar Bég Adv. Powder Technol. 29 639 (2018)

    Article  Google Scholar 

  51. R L Hamilton and O K Crosser EC Fundam. 1 187 (1962)

    Article  Google Scholar 

  52. J C Maxwell A Treatise on Electricity and Magnetism (Cambridge: Oxford University Press) (1904)

    MATH  Google Scholar 

  53. S A Shehzad, F M Abbasi, T Hayat and F Alsaadi J Mol Liquids 209 723 (2015)

    Article  Google Scholar 

  54. J Prakash, D Tripathi and O Anwar Bég Appl. Nanosci. 10 1693 (2020)

    Article  ADS  Google Scholar 

  55. T Hayat, F M Abbasi and B Ahmad Int. Numer. Methods Heat Fluid Flow 25 1868 (2015)

    Article  Google Scholar 

  56. F M Abbasi, T Hayat, F Alsaadi, A M Dobai and H Gao AIP Adv. 5 077104 (2015)

    Article  ADS  Google Scholar 

  57. A Nadeem, M Y Malik, S Nadeem and M Alarifi Ibrahim Eur. Phys. J. Plus 135 145 (2020)

    Article  Google Scholar 

  58. H Sadaf and S. Nadeem. Can. J. Phys. 98 1 (2020)

  59. N Abbas, S Nadeem and M Y Malik. Phys. A: Stat. Mech. Appl. https://doi.org/10.1016/j.physa.2019.123512 (2020)

  60. R Prakash Sharma, M C Raju, O D Makinde, P R Krishna Reddy and P Chandra Reddy Int. J. Appl. Mech. Eng. 22 827 (2019)

    Google Scholar 

  61. P Mohan Krishna, N Sandeep and R Prakash Sharma Eur. Phys. Jl.Plus 132 202 (2017)

  62. N Abbas, M Y Malik and S Nadeem Comput. Methods Prog. Biomed. 185 105136 (2020)

    Article  Google Scholar 

  63. S Ahmad, S Nadeem, N Muhammad and M Naveed Khan J. Therm. Anal. Calorimetry (2020) 1–13

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dharmendra Tripathi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tripathi, D., Prakash, J., Gnaneswara Reddy, M. et al. Numerical study of electroosmosis-induced alterations in peristaltic pumping of couple stress hybrid nanofluids through microchannel. Indian J Phys 95, 2411–2421 (2021). https://doi.org/10.1007/s12648-020-01906-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-020-01906-0

Keywords

Navigation