Skip to main content
Log in

Quantifying of quantum entanglement in Schrödinger cat states with the trapped ion-coherent system for the deep Lamb-Dick regime

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The entangled qudits of three-level trapped ion and two phonons (in coherent state) in \(\Lambda \) configuration forming a Hilbert space of 12-D are investigated. The quantum entropy is analyzed “such as an elaborated measure” in trapped ion-coherent state system. Four values of Lamb-Dicke parameter (LDP), \(\eta =0.005, 0.07, 0.08\) and 0.09 are probed for deep Lamb-Dick regime. We elucidate that as \(\eta \) is increased, sudden death of entangled state in the trapped ion-coherent state system is decreased or vice versa. By this way, sudden birth of entangled state can be tuned by LDP. All graphs in this study are plotted with aid of the Wolfram Mathematica 9.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J Bell Speakable and Unspeakable in Quantum Mechanics (Cambridge: Cambridge Univ. Press) (1987)

    MATH  Google Scholar 

  2. A Einstein, B Podolsky and N Rosen Phys. Rev. 47 777 (1935)

    Article  ADS  Google Scholar 

  3. N Bohr Phys. Rev. 48 696 (1935)

    Article  ADS  Google Scholar 

  4. E Schrödinger Naturwissenschaften 23 (823) 807 (1935)

    Article  ADS  Google Scholar 

  5. J I Cirac and P Zoller Phys. Rev. Lett. 74 4091 (1995)

    Article  ADS  Google Scholar 

  6. R Dermez, B Deveci and D O Güney Eur. Phys. J. D 67 12 (2013)

    Article  Google Scholar 

  7. M Abdel-Aty App. Phys. B 81 193 (2005)

    Article  ADS  Google Scholar 

  8. R Dermez and S A Khalek J. Russ. Laser Res. 32 287 (2011)

    Article  Google Scholar 

  9. W K Wootters Phys. Rev. Lett. 80 2245 (1998)

    Article  ADS  Google Scholar 

  10. G Vidal and R F Werner Phys. Rev. A 65 032314 (2002)

    Article  ADS  Google Scholar 

  11. R Dermez, S A Khalek, K Kara, B Deveci and G N Gunaydin J. Russ. Laser Res. 33 42 (2012)

    Article  Google Scholar 

  12. D F V James Appl. Phys. B 66 181 (1998)

    Article  ADS  Google Scholar 

  13. C Monreo, D M Meekhof, B E King and D J Wineland Science 272 1131 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  14. L F Wei, Y Liu and F Nori Phys. Rev. A 70 063801 (2004)

    Article  ADS  Google Scholar 

  15. S Özen and R Dermez Balkan Physics Letters 16 161046 (2009)

    Google Scholar 

  16. R Dermez and Ö E Müstecaplıoğlu Phys. Scr. 71 015304 (2009)

  17. R Dermez J. Russ. Laser Res.34 192 (2013)

    Article  Google Scholar 

  18. R Dermez and S Özen Eur. Phys. J. D. 57 431 (2010)

    Article  ADS  Google Scholar 

  19. R Dermez and S Özen Phys. Scr. 85 055009 (2012)

    Article  ADS  Google Scholar 

  20. J von Neumann Mathematical Foundations of Quantum Mechanics (Princeton, NJ: Princeton University Press) (1995)

    Google Scholar 

  21. R Dermez J. Russ. Laser Research 38 408 (2017)

    Article  Google Scholar 

  22. J Galinis, M Karpinski, G Tamošauskas, K Dobek and A Piskarskas Lith. J. of Phys. 52 (4) 285 (2012)

    Article  Google Scholar 

  23. B K Ridley Lith. J. of Phys. 55 (4) 239 (2015)

    MathSciNet  Google Scholar 

  24. M Abdel-Aty J. Phys. A 38 8589 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  25. Ö E Müstecaplıoğlu Phys. Rev. A 68 023811 (2003)

    Article  ADS  Google Scholar 

  26. J J Sakurai Modern Quantum Mechanics (Boston: Addison-Wesley Publishing Company) (1994)

    Google Scholar 

  27. M F Fang, S Swain and P Zhou Phys. Rev. A 63 013812 (2000)

    Article  ADS  Google Scholar 

  28. R Dermez J. Russ. Laser Research 37 572–580 (2016)

    Article  Google Scholar 

  29. R Dermez IOP Publishing Journal of Physics: Conference Series 766 012012 (2016)

    Google Scholar 

  30. S J Anvar, M Ramzan and M K Khan Quantum Inf. Process 16 142 (2017)

    Article  ADS  Google Scholar 

  31. Q-H Liao, J-F Wu and P Wang Indian J. Phys. 91 (12) 1615 (2017)

    Article  ADS  Google Scholar 

  32. C-L Zhang and W-W Liu Indian J. Phys. 92 (10) 7 (2018)

    Google Scholar 

  33. L S Pedemales, I Lizuain, S Felicetti, G Romero, L Lamata and E Solano Sci. Rep. 5 15472 (2015)

    Article  ADS  Google Scholar 

  34. R L de Matos Filho and W Vogel Phys. Rev. Lett. 76 608 (1996)

    Article  ADS  Google Scholar 

  35. S A Khalek Opt. Quant. Electron. 46 1055 (2014)

    Article  Google Scholar 

  36. S A Khalek Open Systems and Information Dynamics 22 (03) 1550015 (2015)

    Article  MathSciNet  Google Scholar 

  37. A B A Mohamed, A Joshi and S S Hassan J. Phys. A: Math. Theor. 47 (33) 335301 (2014)

    Article  Google Scholar 

  38. A B A Mohamed Phys. Lett. A 374 (40) 4115 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I thank to S. K. Tellioğlu, I. Pehlivan for his patience. Thanks to Ozgür Mustecaplioğlu and T. Dermez, for their inspired communications. R. D. thanks in the Foreign Language Support Unit at Afyon Kocatepe University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rasim Dermez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dermez, R. Quantifying of quantum entanglement in Schrödinger cat states with the trapped ion-coherent system for the deep Lamb-Dick regime. Indian J Phys 95, 219–224 (2021). https://doi.org/10.1007/s12648-020-01697-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-020-01697-4

Keywords

PACS Nos.

Navigation