Skip to main content
Log in

Fourth-order predictor–corrector FDM for computing the flow of a Newtonian fluid

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

There is a critical necessity for augmenting the accuracy of the solution of problem describing the fluid flow over an exponential stretching sheet to improve proficiently the process of heat transfer in numerous applications. For this purpose, an efficient fourth-order predictor–corrector finite difference method (FDM-4OPC) is implemented in this paper to present the numerical solution for the flow and heat transfer of a Newtonian fluid over an exponentially stretching porous sheet with constant heat flux, variable viscosity and internal heat generation. The technique of thermal radiation is also deliberated in this study. The countless features of the various parameters on both velocity and temperature components are schemed and introduced graphically as well as in tabular form. Further, the effect of the same governing parameters on skin-friction coefficient and Nusselt number is discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M M Khader Commun. Nonlinear. Sci. Numer. Simul.16 2535 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  2. N H Sweilam, M M Khader and A M Nagy Comput. Appl. Math.235 2832 (2011)

    Article  MathSciNet  Google Scholar 

  3. H Johnston and J G Liu J. Comput. Phys. 180 120 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  4. G D Smith Numerical Solution of Partial Differential Equations (Oxford University Press, Oxford, 1965)

    Google Scholar 

  5. L J Crane Z. Angew. Math. Phys. 21 645 (1970)

    Article  Google Scholar 

  6. P S Gupta and A S Gupta Can. J. Chem. Eng. 55 744 (1977)

    Article  Google Scholar 

  7. C K Chen and M I Char Math. Anal. Appl. 135 568-580 (1988)

    Article  MathSciNet  Google Scholar 

  8. I Pop and T Y Na Mech. Res. Commun. 23 413 (1996)

    Article  Google Scholar 

  9. F T Akyildiz and D A Siginer Non-Linear Anal. Real World Appl.11 735 (2010)

    Article  Google Scholar 

  10. A M Megahed Rheol. Acta 51 841 (2012)

    Article  Google Scholar 

  11. A Raptis Int. J. Heat Mass Transfer 41 2865 (1998)

    Article  Google Scholar 

  12. A Raptis Int. Commun. Heat Mass Transf.26 889 (1999)

    Article  Google Scholar 

  13. A J Chamkha and A A Khaled Heat Mass Transf.37 117 (2001)

    Article  ADS  Google Scholar 

  14. R P Sharma, O D Makinde and I L Animasaun Defect Diffus. Forum387 308 (2018)

    Article  Google Scholar 

  15. F Mabood, S M Ibrahim and G Lorenzini J. Eng. Thermophys.26(3) 399 (2017)

    Article  Google Scholar 

  16. P M Krishna, N Sandeep and R P Sharma Eur. Phys. J. Plus 132(202) 1 (2017)

    Google Scholar 

  17. R P Sharma, P V S N Murthy and K Devendra J. Nanofluids6(1) 80 (2017)

    Article  Google Scholar 

  18. R P Sharma, K Avinash, N Sandeep and O D Makinde Defect Diffus. Forum377 242 (2017)

    Article  Google Scholar 

  19. S R Mishra, B Nayak and R P Sharma Defect Diffus. Forum374 92 (2017)

    Article  Google Scholar 

  20. K Das and R P Sharma J. Comput. Des. Eng.3 330 (2016)

    Google Scholar 

  21. P D Ariel Comput. Methods Appl. Mech. Eng.142 111 (1997)

    Article  ADS  Google Scholar 

  22. M M Khader and M Adel Adv. Differ. Equ.2016 1 (2016)

    Article  Google Scholar 

  23. A M T Seyed, A Ramin and K Reza Math. Probl. Eng.2012 1 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Khader.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khader, M.M. Fourth-order predictor–corrector FDM for computing the flow of a Newtonian fluid. Indian J Phys 94, 253–259 (2020). https://doi.org/10.1007/s12648-019-01434-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-019-01434-6

Keywords

PACS Nos.

Navigation