Skip to main content
Log in

Possible scenarios for single, double, or multiple kinetic freeze-out in high-energy collisions

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Transverse momentum spectra of different types of particles produced in mid-rapidity interval in central and peripheral gold–gold (Au–Au) collisions, central and peripheral deuteron–gold (d–Au) collisions, and inelastic (INEL) or non-single-diffractive (NSD) proton–proton (pp) collisions at the Relativistic Heavy Ion Collider (RHIC), as well as in central and peripheral lead–lead (Pb–Pb) collisions, central and peripheral proton–lead (p–Pb) collisions, and INEL or NSD pp collisions at the Large Hadron Collider (LHC) are analyzed by the blast-wave model with Boltzmann–Gibbs statistics. The model results are largely consist with the experimental data in special transverse momentum ranges measured by the PHENIX, STAR, ALICE, and CMS Collaborations. It is showed that the kinetic freeze-out temperature of emission source is dependent on particle mass, which reveals the scenario for multiple kinetic freeze-out in collisions at the RHIC and LHC. The scenario for single or double kinetic freeze-out is not observed in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data used to support the findings of this study are quoted from the mentioned references. As a phenomenological work, this paper does not report new data.

References

  1. A Andronic, P Braun-Munzinger and J Stachel Nucl. Phys. A 772 167 (2006)

    Article  ADS  Google Scholar 

  2. J Cleymans, H Oeschler, K Redlich and S Wheaton Phys. Rev. 73 034905 (2006)

    ADS  Google Scholar 

  3. A Andronic, P Braun-Munzinger and J Stachel Acta Phys. Pol. B 40 1005 (2009)

    ADS  Google Scholar 

  4. A Andronic, P Braun-Munzinger and J Stachel Nucl. Phys. A 834 237c (2010)

    Article  ADS  Google Scholar 

  5. H-L Lao, F-H Liu, B-C Li and M-Y Duan Nucl. Sci. Tech. 29 82 (2018)

    Article  Google Scholar 

  6. H C Song, Y Zhou and K Gajdošová Nucl. Sci. Tech. 28 99 (2017)

    Article  Google Scholar 

  7. E Schnedermann, J Sollfrank and U Heinz Phys. Rev. C 48 2462 (1993)

    Article  ADS  Google Scholar 

  8. B I Abelev et al. [STAR Collaboration] Phys. Rev. C 79 034909 (2009)

  9. B I Abelev et al. [STAR Collaboration] Phys. Rev. C 81 024911 (2010)

  10. S S Adler et al. [PHENIX Collaboration] Phys. Rev. C 69 034909 (2004)

  11. A Adare et al. [PHENIX Collaboration] Phys. Rev. C 88 024906 (2013)

  12. S S Adler et al. [PHENIX Collaboration] Phys. Rev. C 75 024909 (2007)

  13. A Adare et al. [PHENIX Collaboration] Phys. Rev. C 83 024909 (2011)

  14. A Adare et al. [PHENIX Collaboration] Phys. Rev. C 83 064903 (2011)

  15. B I Abelev et al. [STAR Collaboration] Phys. Rev. Lett. 99 112301 (2007)

  16. J Adams et al. [STAR Collaboration] Phys. Rev. Lett. 98 062301 (2007)

  17. J Adams et al. [STAR Collaboration] Phys. Lett. B 612 181 (2005)

  18. B I Abelev et al. [STAR Collaboration] Phys. Rev. C 75 064901 (2007)

  19. B Abelev et al. [ALICE Collaboration] Phys. Rev. Lett. 109 252301 (2012)

  20. B Abelev et al. [ALICE Collaboration] Phys. Rev. C 88 044910 (2013)

  21. B Abelev et al. [ALICE Collaboration] Phys. Rev. C 91 024609 (2015)

  22. B Abelev et al. [ALICE Collaboration] Phys. Lett. B 728 216 (2014) and Erratum Phys. Lett. B 734 409 (2014)

  23. B Abelev et al. [ALICE Collaboration] Phys. Lett. B 728 25 (2014)

  24. J Adam et al. [ALICE Collaboration] Eur. Phys. J. C 76 245 (2016)

  25. J Adam et al. [ALICE Collaboration] Phys. Lett. B 758 389 (2016)

  26. J Adam et al. [ALICE Collaboration] Eur. Phys. J. C 75 226 (2015)

  27. B Abelev et al. [ALICE Collaboration] Eur. Phys. J. C 72 2183 (2012)

  28. V Khachatryan et al. [CMS Collaboration] JHEP 05 064 (2011)

  29. Z B Tang, Y C Xu, L J Ruan, G van Buren, F Q Wang and Z B Xu Phys. Rev. C 79 051901(R) (2009)

  30. S Takeuchi, K Murase, T Hirano, P Huovinen and Y Nara Phys. Rev. C 92 044907 (2015)

    Article  ADS  Google Scholar 

  31. H Heiselberg and A M Levy Phys. Rev. C 59 2716 (1999)

    Article  ADS  Google Scholar 

  32. U W Heinz Lecture Notes for Lectures Presented at the 2nd CERN—Latin-American School of High-Energy Physics (1–14 June 2003, San Miguel Regla, Mexico), arXiv:hep-ph/0407360 (2004)

  33. R Russo PhD Thesis (Universita degli Studi di Torino, Italy) (2015), arXiv:1511.04380 [nucl-ex] (2015)

  34. H-R Wei, F-H Liu and R A Lacey Eur. Phys. J. A 52 102 (2016)

    Article  ADS  Google Scholar 

  35. H-L Lao, H-R Wei, F-H Liu and R A Lacey Eur. Phys. J. A 52 203 (2016)

    Article  ADS  Google Scholar 

  36. H-R Wei, F-H Liu and R A Lacey J. Phys. G 43 125102 (2016)

    Article  ADS  Google Scholar 

  37. J Cleymans and D Worku Eur. Phys. J. A 48 160 (2012)

    Article  ADS  Google Scholar 

  38. H Zheng and L L Zhu Adv. High Energy Phys. 2016 9632126 (2016)

    Article  Google Scholar 

  39. S Zhang, Y G Ma, J H Chen and C Zhong Adv. High Energy Phys. 2015 460590 (2015)

    Article  Google Scholar 

  40. A Bialas, W Florkowski and K Zalewski J. Phys. G 42 045001 (2015)

    Article  ADS  Google Scholar 

  41. X Sun, H Masui, A M Poskanzer and A Schmah Phys. Rev. C 91 024903 (2015)

    Article  ADS  Google Scholar 

  42. W Florkowski Acta Phys. Pol. B  47 2241 (2016)

    Article  ADS  Google Scholar 

  43. J Cimerman, B Tomasik, M Csanad and S Lokos Eur. Phys. J. A 53 161 (2017)

    Article  ADS  Google Scholar 

  44. R Odorico Phys. Lett. B 118 151 (1982)

    Article  ADS  Google Scholar 

  45. G Arnison et al. [UA1 Collaboration] Phys. Lett. B 118 167 (1982)

  46. T Mizoguchi, M Biyajima and N Suzuki Int. J. Mod. Phys. A 32 1750057 (2017)

    Article  ADS  Google Scholar 

  47. R Hagedorn Riv. Nuovo Cimento 6 1 (1983)

    Article  MathSciNet  Google Scholar 

  48. B Abelev et al. [ALICE Collaboration] Eur. Phys. J. C 75 1 (2015)

  49. K Aamodt et al. [ALICE Collaboration] Phys. Lett. B 693 53 (2010)

  50. A De Falco [for the ALICE Collaboration] J. Phys. G 38 124083 (2011)

  51. I Abt et al. [HERA-B Collaboration] Eur. Phys. J. C 50 315 (2007)

  52. B Abelev et al. [ALICE Collaboration] Phys. Lett. B 710 557 (2012)

  53. B Abelev et al. [ALICE Collaboration] Phys. Lett. B 718 295 (2012) and Erratum Phys. Lett. B 748 472 (2015)

  54. I Lakomov [for the ALICE collaboration] Nucl. Phys. A 931 1179 (2014)

  55. B Abelev et al. [ALICE Collaboration] Phys. Lett. B 708 265 (2012)

  56. S Chatterjee and B Mohanty Phys. Rev. C 90 034908 (2014)

    Article  ADS  Google Scholar 

  57. D Thakur, S Tripathy, P Garg, R Sahoo and J Cleymans Adv. High Energy Phys. 2016 4149352 (2016)

    Article  Google Scholar 

  58. S Chatterjee, S Das, L Kumar, D Mishra, B Mohanty, R Sahoo and N Sharma Adv. High Energy Phys. 2015 349013 (2015)

    Article  Google Scholar 

  59. S Chatterjee, B Mohanty and R Singh Phys. Rev. C 92 024917 (2015)

    Article  ADS  Google Scholar 

  60. H-L Lao, F-H Liu, B-C Li, M-Y Duan and R A Lacey, Nucl. Sci. Tech. 29 164 (2018)

    Article  Google Scholar 

  61. J D Bjorken Phys. Rev. D 27 140 (1983)

    Article  ADS  Google Scholar 

  62. K Okamoto and C Nonaka Eur. Phys. J. C 77 383 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Communications from Edward K. Sarkisyan-Grinbaum are highly acknowledged. This work was supported by the National Natural Science Foundation of China under Grant Nos. 11575103 and 11747319, the Chinese Government Scholarship (China Scholarship Council), the Shanxi Provincial Natural Science Foundation under Grant No. 201701D121005 (China), the Fund for Shanxi “1331 Project” Key Subjects Construction (China), and the Grant of Scientific Research Deanship at Qassim University (Kingdom of Saudi Arabia).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F-H Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Waqas, M., Liu, FH., Fakhraddin, S. et al. Possible scenarios for single, double, or multiple kinetic freeze-out in high-energy collisions. Indian J Phys 93, 1329–1343 (2019). https://doi.org/10.1007/s12648-019-01396-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-019-01396-9

Keywords

PACS Nos.

Navigation