Skip to main content
Log in

Structural analysis and charge transfer properties of a novel pyrazoline derivative: potential energy scan, XRD, DFT and molecular docking studies

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The title molecule, 1-[3-(6-bezyloxy-2-hydroxy-4-methyl-cyclohexa-2, 4-dienyl)-5-phenyl-4, 5-dihydro-pyrazol-1-yl]-propan-1-one was synthesized and characterized by FTIR, 1H NMR, 13C NMR and single-crystal X-ray diffraction technique. The optimized geometry is calculated using density functional theory (DFT). A good linear correlation was observed between experimental data and theoretical structural parameters (DFT). Predicted vibrational frequencies were assigned and compared with the experimental IR spectra and they support each other. To determine conformational flexibility and hence to predict the stable geometry, potential energy scan of the molecule was obtained with respect to selected degree of freedom about O18–C19 torsional angle varied from − 180° to + 180° in steps 20°. NBO analysis was carried out for the molecule to check possible hydrogen bond interactions to correlate with those of X-ray data. Molecular stability is mainly due to weak but collective contributions of significant nonconventional C–H…π, π–π and C–H…O-type hydrogen bond interactions and those interactions also quantified by Hirshfeld surface analysis. The thermal stability of the compound was determined with the aid of thermo-gravimetric analysis and differential thermal analysis. The molecular docking study was carried out against the title molecule with 5DBM protein receptor active sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. E Palaskar, M Aytemir, I T Uzbay and D Erol Eur. J. Med. Chem. 36 539 (2001)

    Article  Google Scholar 

  2. J Tae-Sook, K K Soon, K Ju-Ryoung, C Kyung-Hyun, S Lee and W S Lee Bio Org. Med. Chem. Lett. 14 2719 (2004)

    Article  Google Scholar 

  3. S R Smith, G Denhardt and C Terminelli Eur. J. Pharmacol. 432 107 (2001)

    Article  Google Scholar 

  4. Z Ozdemir, H B Kandilici, B Gumusel, U Calis and A A Bilgin Eur. J. Med. Chem. 42 373 (2007)

    Article  Google Scholar 

  5. B K Sarkar, R Patel and U Bhadoriya J. Adv. Pharm. Edu. Res. 1 243 (2011)

    Google Scholar 

  6. P G Baraldi, S Manfredini, R Romagnoli, L Stevanato, A N Zaid and R Manservigi Nucleos. Nucleot. 17 2165 (1998)

    Article  Google Scholar 

  7. C Franco et al. J. Med. Chem. 48 7113 (2005)

    Article  Google Scholar 

  8. B Gowramma, S Jubie, R Kalirajan, S Gomathy and K Elango Int. J. Pharm. Tech. Res. 1 347 (2009)

    Google Scholar 

  9. M J Genin, D A. Allwine et al. J. Med. Chem. 43 5 953 (2000)

  10. D Rambabu, G R Krishna, S Basavoju, C M Reddy and M Pal J. Mol. Struct. 994 332 (2011)

    Article  ADS  Google Scholar 

  11. W L John, R M Patera, M J Plummer, B P Halling and D A Yuhas Pest. Manag. Sci. 42 29 (1994)

  12. M P Donohue, D A Marchuk and H A Rockman J. Am. Coll. Cardiol. 48 1289 (2006)

    Article  Google Scholar 

  13. G Bai, J Li, D Li, C Dong, X Han and P Lin Dyes. Pigment 75 93 (2007)

  14. Z L Gong, Y S Xie, B X Zhao, H S Lv and W Y Liu J. Fluoresci. 21 355 (2011)

    Article  Google Scholar 

  15. M G Mamolo, D Zampieri, V Falagiani, L Vio and E Banfi Farmaco 56 593 (2001)

    Article  Google Scholar 

  16. C Cativiela, J L Serrano and M M Zurbano J. Org. Chem. 60 3074 (1995)

    Article  Google Scholar 

  17. D Wang, C Y Zheng and L Fan J. Mol. Struct. 938 311 (2009)

    ADS  Google Scholar 

  18. U H Patel, S A Gandhi, V M Barot and M C Patel J. Mol. Cryst. Liq. Cryst. 624 190 (2016)

    Article  Google Scholar 

  19. S A Gandhi, U H Patel, R D Modh, Y T Naliyapara and A S Patel J. Chem. Crystallogr. 46 387 (2016)

    Article  Google Scholar 

  20. U H Patel, S A Gandhi, V M Barot and M C Patel Cryst. Struct. Theory Appl. 2 167 (2013)

    Article  Google Scholar 

  21. U H Patel, S A Gandhi, V M Barot and N V S Varma Acta Cryst. E69 o840 (2013)

    Google Scholar 

  22. U H Patel and S A Gandhi IJPAP 49 263 (2011)

    Google Scholar 

  23. K Sarojini, H Krishnan, C C Kanakam and S Muthu Spectrochim. Acta A 108 159 (2013)

    Article  ADS  Google Scholar 

  24. G Fitzgerald and J Andzelm J. Phys. Chem. 95 10531 (1991)

    Google Scholar 

  25. T Ziegler Pure Appl. Chem. 63 873 (1991)

  26. J Andzelm and E Wimmer J. Chem. Phys. 96 1280 (1992)

    Google Scholar 

  27. G E Scuseria J. Chem. Phys. 97 7528 (1992)

    Google Scholar 

  28. R M Dickson and A D Becke J. Chem. Phys. 99 3898 (1993)

    Google Scholar 

  29. B G Johnson, P M W Gill and J A Pople J. Chem. Phys. 98 5612 (1993)

    Google Scholar 

  30. A D McLean and G S Chandler J Chem. Phys. 72 5639 (1980)

    Google Scholar 

  31. S K Wolff, D J Grimwood, J J McKinnon, D Jayatilaka and M A Spackman CrystalExplorer 2.1 University of Western Australia, Perth (2007)

  32. M A Spackman and P G Byrom Chem. Phys. Lett. 267 215 (1997)

    Article  ADS  Google Scholar 

  33. F Weinhold and F Landis Valency and bonding: A natural bond orbital donor-acceptor perspective (Cambridge University Press, Cambridge) (2005)

    Book  Google Scholar 

  34. G M Sheldrick Acta Cryst. A64 112 (2008)

  35. M J Frisch and et al. Gaussian 09 Revision B.01 (Gaussian, Inc., Wallingford CT) (2010)

  36. A Frisch, A B Nielsen and A J Holder GAUSSVIEW Commercial Molecular Graphics Software (2005)

  37. H B Schlegel J. Comput. Chem. 3 214 (1982)

    Google Scholar 

  38. P Hohenberg and W Kohn Phys. Rev. 136 B864 (1964)

    Article  ADS  Google Scholar 

  39. A D Becker J. Chem. Phys. 98 5648 (1993)

    Google Scholar 

  40. C Lee, W Yang and R G Parr Phys. Rev. B37 785 (1988)

    Article  ADS  Google Scholar 

  41. M Amalanathan and I H Joe and I Kostova J. Raman Spect. 41 1076 (2009)

    Article  ADS  Google Scholar 

  42. L J Farrugia J. Appl. Cryst. 45 849 (2012)

    Article  Google Scholar 

  43. A L Spek Acta Cryst. D65 148 (2009)

  44. Shi-Lu Zhang, Kun Huang and Da-Bin Qina, Acta Cryst. E68 o1370 (2012)

    Google Scholar 

  45. Zhi-Ke Lu, Hai-Lin Diao, Shen Li, Bin He Acta Cryst. E64 o1638 (2008)

    Google Scholar 

  46. J Bernstein, R E Davis, L Shimoni and N L Chang Angew Chem. Int. Ed. Engl. 34 1555 (1995)

    Article  Google Scholar 

  47. J F Malone, C M Murray, M H Charlton, R Docherty and A J Lavrry J. Chem. Soc. 93 3429 (1997)

    Google Scholar 

  48. R M Silverstein, G C Bassler and T C Morrill Spectrometric Identification of Organic Compounds (5th ed., John Wiley & Sons, New York) (1991)

    Google Scholar 

  49. V Arjunan, C V Mthili, K Mageswari and A Mohan Spectrochim. Acta Part A 79 245 (2011)

    Article  ADS  Google Scholar 

  50. S Ramalingam, S Periandy and S Mohan Spectrochim. Acta A 77 73 (2010)

    Article  ADS  Google Scholar 

  51. B S Yadav, S K Tyagi and Seema IJPAP 44 644 (2006)

    Google Scholar 

  52. V Arjunan, S Mohan, S Subramanian and B T Gowda Spectrochim Acta A 60 1141 (2004)

    Article  ADS  Google Scholar 

  53. H Rostkowska and et al. Spectrochim Acta A 49 551 (1993)

    Article  ADS  Google Scholar 

  54. V Krishnakumar, M Sivasubramanian and S Muthunatesan S J. Raman Spectrosc. 40 987 (2009)

    Article  ADS  Google Scholar 

  55. I Fleming Frontier Orbitals and Organic Chemical Reactions (John Wiley & Sons, United Kingdom) Ch 2 (1973)

  56. R M Yosadara J. Phys. Chem. A106 11283 (2002)

    Google Scholar 

  57. A E Reed, L A Curtiss and F Weinhold Chem. Rev. 88 899 (1988)

    Google Scholar 

  58. M Szafran, A Komasa and E B Adamska J. Mol. Struct. Theochem. 827 101 (2007)

    ADS  Google Scholar 

  59. C James, R A Amal, R Reghunathan, I H Joe and V S Jayakumar J. Raman Spectrosc. 37 1381(2006)

    Article  ADS  Google Scholar 

  60. M A Spackman and P G Byrom Chem. Phys. Lett. 267 215 (1997)

    Article  ADS  Google Scholar 

  61. J J McKinnon, A S Mitchell and M A Spackman Chem. Eur. J 4 2136 (1998)

    Article  Google Scholar 

  62. M A Spackman and J J McKinnon Cryst. Eng. Commun. 4 378 (2002)

    Article  Google Scholar 

  63. F P A Fabbiani, L T Byrne, J J Mckinnon and M A Spackman CrystEngComm 9 728 (2007)

    Article  Google Scholar 

  64. M A Spackman and D Jayatilaka CrystEngComm 11 19 (2009)

    Article  Google Scholar 

  65. A J Broido J. Polym. Sci. Part A‐2 7 1761 (1969)

  66. S M Tailor and U H Patel J. Mol. Struct. 1088 161 (2015)

    Google Scholar 

  67. A W Coats and J P Redfern Nature 201 68 (1964)

    Article  ADS  Google Scholar 

  68. R K R Venugopala, J Keshavayya and J Seetharamappa Dyes Pigments 59 237 (2003)

    Article  Google Scholar 

  69. O R A Friesner and et al. J. Med. Chem. 49 6177 (2006)

    Article  Google Scholar 

  70. S Ghosh, A Taylor, M Chin, et al. J. Biol. Chem. 291 25 13014 (2016)

  71. Schrödinger (Maestro, version 10.4, Schrödinger, LLC, New York, NY) (2015)

Download references

Acknowledgement

We are thankful to DST, New Delhi for single-crystal X-ray diffractometer facility under DST-FIST program and UGC, New Delhi for Schrodinger software facility under UGC-DSA program. One of us, SAG, is also thankful to UGC, New Delhi, for the financial support (RFSMS) carried out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sahaj A. Gandhi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gandhi, S.A., Patel, U.H., Barot, V.M. et al. Structural analysis and charge transfer properties of a novel pyrazoline derivative: potential energy scan, XRD, DFT and molecular docking studies. Indian J Phys 93, 1275–1291 (2019). https://doi.org/10.1007/s12648-019-01392-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-019-01392-z

Keywords

PACS Nos.

Navigation