Skip to main content
Log in

The effects of exchange–correlation on high-frequency electrostatic surface wave in magnetized quantum plasma through a porous medium

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In this paper the propagation of an electrostatic surface wave at the interface between a vacuum and quantum plasma through a Brinkman porous medium is studied by considering exchange–correlation effects. A general analytical expression for dispersion relation is derived using the linearized quantum hydrodynamic model in conjunction with Poisson’s equation in the presence of a static and constant magnetic field. The growth and instability rates of electrostatic surface waves are obtained and separated. Numerical values are used to summarize and analyze the normalized dispersion relations for overcritical dense plasma condition in different cases. The results show that the behavior of surface plasmon waves can be significantly modified by the exchange–correlation effects which have different influences on the system stability. It is shown that the exchange–correlation effects caused the frequency of such waves to down-shift. It is found that the down-shift of the real part of frequency Re(Ω) by the exchange–correlation effect may increase by either increasing the plasmonic coupling H or increasing the porosity effects. In addition, it is shown that by increasing the magnetic field strength the group velocity is increased. Although the instability of the surface wave is decreased by increasing the plasmonic coupling H, it is increased by increasing the porosity effects (ν). The obtained results can help us in the physical understanding of the surface magnetized quantum wave on a semi-bounded quantum plasma through a porous media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S Chandrasekhar Hydrodynamic and Hydromagnetic Stability (Oxford: Clarendon Press) (1968)

    MATH  Google Scholar 

  2. R C Sharma and J N Misra Pramana 29 79 (1987)

    Article  ADS  Google Scholar 

  3. R Sunil Phys. Plasmas 6 50 (1999)

    Article  ADS  Google Scholar 

  4. R Sharma, E Nyland and K Thakur Physica B+ C 122 341 (1983)

    Article  ADS  Google Scholar 

  5. E Spiegel and G Veronis Astrophys. J. 131 442 (1960)

    Article  ADS  MathSciNet  Google Scholar 

  6. P K Shukla and A Mamun Introduction to Dusty Plasma Physics (Boca Raton: CRC Press) (2001)

    Book  MATH  Google Scholar 

  7. F Chen Introduction to Plasma Physics and Controlled Fusion (New York: Plenum Press) (1984)

    Book  Google Scholar 

  8. A A Garamoon and D M El-zeer Plasma Sources Sci. Technol. 18 045006 (2009)

    Article  ADS  Google Scholar 

  9. E M M Ewais, S Barg, G Grathwohl, A A Garamoon and N N Morgan Int. J. Appl. Ceram. Technol. 8 85 (2011)

    Article  Google Scholar 

  10. J Plawsky, S Ponoth, G Dalakos, K Malek and M O Coppens Superlattices Microstruct. 35 195 (2004)

    Article  ADS  Google Scholar 

  11. P A Andreev Phys. Plasmas 23 012106 (2016)

    Article  ADS  Google Scholar 

  12. R Ekman, J Zamanian and G Brodin Phys. Rev. E 92 013104 (2015)

    Google Scholar 

  13. P A Andreev Ann. Phys. 350 198 (2014)

    Article  ADS  Google Scholar 

  14. J Zamanian, M Marklund and G Brodin Phys. Rev. E 88 063105 (2013)

    Google Scholar 

  15. P Hohenberg and W Kohn Phys. Rev. 136 B864 (1964)

    Article  ADS  Google Scholar 

  16. W Kohn and L J Sham Phys. Rev. 140 A1133 (1965)

    Article  ADS  Google Scholar 

  17. A Alexandrov, L Bogdankevich and A Rukhadze Principles of Plasma Electrodynamics (Berlin: Springer) (1984)

    Book  Google Scholar 

  18. M Shahmansouri Phys. Plasmas 22 092106 (2015)

    Article  ADS  Google Scholar 

  19. A A Khan, M Jamil and A Hussain Phys. Plasmas 22 092103 (2015)

    Article  ADS  Google Scholar 

  20. M Akbari-Moghanjoughi and M Ghorbanalilu Phys. Plasmas 22 112111 (2015)

    Article  ADS  Google Scholar 

  21. A Abdikian and Z Ehsan Phys. Lett. A (2017) (in press)

    Google Scholar 

  22. A Abdikian Eur. Phys. J. D 70 218 (2016)

    Article  ADS  Google Scholar 

  23. L Wei and Y-N Wang Phys. Rev. B 75 193407 (2007)

    Article  ADS  Google Scholar 

  24. A Abdikian and M Bagheri Phys. Plasmas 20 102103 (2013)

    Article  ADS  Google Scholar 

  25. Z Yu, G Veronis, S Fan and M L Brongersma Appl. Phys. Lett. 89 151116 (2006)

    Google Scholar 

  26. M Bagheri and A Abdikian Phys. Plasmas 21 042506 (2014)

    Article  ADS  Google Scholar 

  27. M Lazar, P K Shukla and A Smolyakov Phys. Plasmas 14 124501 (2007)

    Article  ADS  Google Scholar 

  28. Z-Q Zhang and P Sheng Phys. Rev. E 49 3050 (1994)

    Article  ADS  Google Scholar 

  29. K Walters Q. J. Mech. Appl. Math. 13 325 (1960)

    Google Scholar 

  30. V Sharma, R Shyam and S Sharma J. Porous Media 17 169 (2014)

    Article  Google Scholar 

  31. E Lapwood Math. Proc. Camb. Philos. Soc. 44 508 (1948)

  32. G A Hoshoudy Indian J. Phys. 90 477 (2015)

    Google Scholar 

  33. A Tiwari, S Argal and P K Sharma Indian J. Phys. 89 1313 (2015)

    Google Scholar 

  34. G A Hoshoudy Phys. Lett. A 373 2560 (2009)

    Article  ADS  Google Scholar 

  35. G Hoshoudy J. Porous Media 15 373 (2012)

  36. R Sharma Astrophys. Space Sci. 194 303 (1992)

    Article  ADS  Google Scholar 

  37. G A Hoshoudy Phys. Plasmas 16 024501 (2009)

    Article  ADS  Google Scholar 

  38. R K Chhajlani and D S Vaghela Astrophys. Space Sci. 139 337 (1987)

    Article  ADS  Google Scholar 

  39. M Discacciati and A Quarteroni Rev. Mat. Complut. 22 315 (2009)

    Article  MathSciNet  Google Scholar 

  40. H Darcy Les fontaines publiques de la ville de Dijon: exposition et application (Paris: Victor Dalmont) (1856)

    Google Scholar 

  41. S Whitaker Chem. Eng. Sci. 21 291 (1966)

    Article  Google Scholar 

  42. K Vafai Handbook of Porous Media (London: Taylor & Francis Group) pp 108 (2005)

    Google Scholar 

  43. D B Ingham and I Pop Transport Phenomena in Porous Media (Amsterdam: Elsevier) (1998)

    MATH  Google Scholar 

  44. L D Landau and E Lifshitz Statistical Physics, Part I (Oxford: Pergamon) (1980)

    Google Scholar 

  45. F M Bahaa Phys. Scr. 82 065502 (2010)

    Article  Google Scholar 

  46. R Sharma and P Kumar Indian J. Pure Appl. Math. 24 563 (1993)

    Google Scholar 

  47. B F Mohamed and R Albrulosy J. Mod. Phys. 4 327 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Abdikian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdikian, A. The effects of exchange–correlation on high-frequency electrostatic surface wave in magnetized quantum plasma through a porous medium. Indian J Phys 91, 1127–1133 (2017). https://doi.org/10.1007/s12648-017-0990-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-017-0990-6

Keywords

PACS Nos.

Navigation