Skip to main content
Log in

First principles prediction of a new high-pressure phase and transport properties of Mg2Si

  • ORIGINAL ARTICLE
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

We have investigated the structural properties of seven different structure types of Mg2Si which include the cubic CaF2, orthorhombic PbCl2, hexagonal Ni2In, tetragonal Al2Cu, Laves phase (cubic MgCu2), hexagonal MgZn2 and dihexagonal MgNi2 type of structures, using a full potential linearized augmented plane wave method as implemented in WIEN2k within the framework of density functional theory. The exchange–correlation potential is treated by the new form of generalized gradient approximation (GGA-PBEsol). In total energy calculations it is clearly seen that cubic CaF2-type structure is stable at ambient conditions, and it undergoes a first-order phase transition to orthorhombic PbCl2-type, then to the hexagonal Ni2In-type structure and finally to the cubic Laves phase MgCu2-type. A new structure type is predicted to be stable at high pressure. Moreover, we intend to combine the electronic structure calculations performed by mean of generalized gradient approximation and modified Becke–Johnson potential with Boltzmann transport theory as incorporated in BoltzTraP code to interpret and predict the thermoelectric performance of each stable phase as a function of the chemical potential at various temperatures. We find a high thermoelectric thermopower values in cubic CaF2-type structure that could promise an excellent candidate for potential thermoelectric applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. E N Nikitin, V G Bazanov and V I Tarasov Sov. Phys. Solid State 3 2648 (1962)

    Google Scholar 

  2. M I Fedorov J. Thermoelectr. 2 51 (2009)

  3. J Hao et al. Solid State Commun. 149 689 (2009)

    Article  ADS  Google Scholar 

  4. F Kalarasse and B Bennecer J. Phys.Chem. Solids 69 1775 (2008)

    Article  ADS  Google Scholar 

  5. F Yu, J X Sun, W Yang, R G Tian, and G F Ji Solid State Commun. 150 620 (2010)

    Article  ADS  Google Scholar 

  6. N F Hinsche, I Mertig and P Zahn J. Phys. Condens. Matter. 24 275501 (2012)

    Article  ADS  Google Scholar 

  7. B Arnaud and M Alouani Phys. Rev. B 64 033202 (2001)

    Article  ADS  Google Scholar 

  8. J E Mahan, A Vantomme, G Langouche and J P Becker Phys. Rev. B 54 16965 (1996)

    Article  ADS  Google Scholar 

  9. K Kondoh, H Oginuma, A Kimura, S Matsukawa and T Aizawa Mater. Trans. 44 981 (2003)

    Article  Google Scholar 

  10. M W Heller and G C Damielson J. Phys. Chem. Solid 23 601 (1962)

    Article  ADS  Google Scholar 

  11. V K Zaitsev, M I Fedorov, E A Gurieva, I S Eremin, P P Konstantinov, Yu A Samunin, and M V Vedernikov Phys. Rev. B 74 045207 (2006)

    Article  ADS  Google Scholar 

  12. H Balout, P Boulet and M C Record J. Electron. Mater. 42 3458 (2013)

    Article  ADS  Google Scholar 

  13. G T Alekseeva, V K Zaitsev, A V Petrov, V I Tarasov and M I Fedorov Sov. Phys. Solid State 23 1685 (1981)

    Google Scholar 

  14. W Luoa, M Yang, F Chen, et al. Mater. Sci. Eng. B 157 96 (2009)

    Article  Google Scholar 

  15. G K H Madsen and D J Singh Comput. Phys. Commun. 175 67 (2006)

    Article  ADS  Google Scholar 

  16. J B Friauf J. Am. Chem. Soc. 49 3107 (1927)

    Article  Google Scholar 

  17. J B Friauf Phys. Rev. 29 34 (1927)

    Article  ADS  Google Scholar 

  18. P Hohemberg and W Kohn Phys. Rev. B 136 864 (1964)

    Article  ADS  Google Scholar 

  19. W Kohn and L J Sham Phys. Rev. A 140 1133 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  20. K M Wong, S M Alay-e-Abbas, Y Fang, A Shaukat and Y Lei J. Appl. Phys. 114 034901 (2013)

    Article  ADS  Google Scholar 

  21. K M Wong, S M Alay-e-Abbas, A Shaukat, Y Fang and Y Lei J. Appl. Phys. 113 014304 (2013)

    Article  ADS  Google Scholar 

  22. J P Perdew, A Ruzsinszky, G I Csonka, O A Vydrov, G E Scuseria, L A Constantin, X Zhou, and K Burke Phys. Rev. Lett. 100 136406 (2008)

    Article  ADS  Google Scholar 

  23. H J Monkhorst and J D Pack Phys. Rev. B 13 5188 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  24. F Tran and P Blaha Phys. Rev. Lett. 102 226401 (2009)

    Article  ADS  Google Scholar 

  25. F D Murnaghan, Proc. Natl. Acad. Sci. 30 5390 (1944).

    Google Scholar 

  26. J L Corkill and M L Cohen Phys. Rev. B 48 17138 (1993)

    Article  ADS  Google Scholar 

  27. J I Tani and H Kido Comput. Mater. Sci. 42 531 (2008)

    Article  Google Scholar 

  28. E Anastassakis, J P Hawranek, Phys. Rev. B 5 4003 (1972)

    Article  ADS  Google Scholar 

  29. J Zhang, Z Fan, Y Q Wang and B L Zhou Mater. Sci. Eng. A 281 104 (2000)

    Article  Google Scholar 

  30. J H Hao, Z G Guo and Q H Jin Solid State Commun. 150 2299 (2010)

    Article  ADS  Google Scholar 

  31. J Hao Studies on the characteristics and structure transformation of magnesium silicide under high pressure (China: University of Jilin) (2008).

  32. U Winkler Helv. Physica. Acta. 28 633 (1955)

  33. P Koenig, D W Lynch and G C Danielson J. Phys. Chem. Solids 20 122 (1961)

    Article  ADS  Google Scholar 

  34. W J Scouler Phys. Rev. 178 1353 (1969)

    Article  ADS  Google Scholar 

  35. F Vazquez, R Forman and M Cardona Phys. Rev. 176 905 (1968)

    Article  ADS  Google Scholar 

  36. O Benhelal, A Chahed, S Laksari, B Abbar, B Bouhafs and H Aourag Phys. Status Solidi b 242 2022 (2005)

    Article  ADS  Google Scholar 

  37. [37] P Boulet, M J Verstraete, J P Crocombette, M Briki and M C Record Comput Mater. Sci. 50 847 (2011)

    Article  Google Scholar 

  38. R G Morris and R D Redin, G C Danielson Phys. Rev. 109 1909 (1958)

    Article  ADS  Google Scholar 

  39. G Murtaza, A Sajid, M Rizwan, Y Takagiwa, H Khachai, M Jibran, R Khenata and S B Omran Mater. Sci. Semicond. Process. 40 429 (2015)

    Article  Google Scholar 

  40. M Akasaka, T Iida, A Matsumoto, K Yamanaka, Y Takanashi, T Imai and N Hamada J. Appl. Phys. 104 013703 (2008)

    Article  ADS  Google Scholar 

  41. W Ren, Y Han, C Liu, N Su, Y Li, B Ma, Y Ma and C Gao Solid State Commun. 152 440 (2012)

    Article  ADS  Google Scholar 

  42. H Balout, P Boulet and M C Record, J. Solid State Chem. 175 225 (2015)

  43. J Bourgeois, J Tobola, B Wiendlocha, L Chaput, P Zwolenski, D Berthebaud, F Gascion, Q Recour and H Scherrer Funct. Mater. Lett. 6 1340005 (2013)

    Article  ADS  Google Scholar 

  44. J Tani and H Kido Intermetallics 15 1202 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Arbouche.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kessair, S., Arbouche, O., Amara, K. et al. First principles prediction of a new high-pressure phase and transport properties of Mg2Si. Indian J Phys 90, 1403–1415 (2016). https://doi.org/10.1007/s12648-016-0876-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-016-0876-z

Keywords

PACS Nos.

Navigation