Skip to main content

Advertisement

Log in

Numerical simulation of oscillation phenomenon for droplet spreading on solid surface by lattice Boltzmann method

  • Original paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The oscillation phenomenon during droplet spreading on solid surface is studied. Simulations based on the lattice Boltzmann method with the mass processed by the volume of fluid show that the oscillation continues during the whole spreading process and the maximum oscillation value occurs at the initial phase. By observing the amplitude of droplet contour volume and liquid membrane velocity, the amplitude change is obtained. The influence of droplet characteristics on amplitude is studied. Simulated results show that the effect of kinematic viscosity on droplet oscillation is greater than that of droplet surface tension. The velocity vectors inside the droplet are also tracked to understand the oscillation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R D Narhe and D A Beysens Langmuir 23 6486 (2007)

    Article  Google Scholar 

  2. X Y Gao, Q G Lin, Y F Liu and J X Lu Braz. J. Phys. 38 336 (2008)

    ADS  Google Scholar 

  3. Y T Cheng, D E Rodak and A Angelopoulos Appl. Phys. Lett. 87 194112 (2005)

    Article  ADS  Google Scholar 

  4. S Masuda and S Sawada Eur. Phys. J. D 61 637 (2011)

    Article  ADS  Google Scholar 

  5. J W Cahn J. Chem. Phys 66 3667 (1977)

    Article  ADS  Google Scholar 

  6. D M Anderson, G B McFadden and A A Wheeler Annu. Rev. Fluid Mech. 30 139 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  7. R Tsekov, D Borissov and S I Karakashev Colloid Surf. A 423 77 (2013)

    Article  ADS  Google Scholar 

  8. K S Lee and V M Starov J. Colloid Interface Sci 329 361 (2009)

    Article  Google Scholar 

  9. G W Koen, H W Joost and E Antonin Phys Rev E 85 055301 (2012)

    Article  Google Scholar 

  10. P Papatzacos Transp. Porous Media 61 139 (2002)

    Article  MathSciNet  Google Scholar 

  11. P Papatzacos and S M Skjæveland Transp. Porous Media 65 213 (2006)

    Article  MathSciNet  Google Scholar 

  12. D R Beacham and O K Matar Langmuir 25 14174 (2009)

    Article  Google Scholar 

  13. S S Liu, C H Zhang and H B Zhang Chin Phys B 22 106801 (2013)

    Article  ADS  Google Scholar 

  14. J Yang, Z Z Zhang and X H Men Carbon 49 19 (2011)

    Article  Google Scholar 

  15. Y F Gao, Y Yang and D Y Sun Chin. Phys. Lett. 28 036102 (2011)

    Article  ADS  Google Scholar 

  16. H F Qiang, C Shi and F Z Chen Acta Phys. Sin. 62 214701 (2013)

    Google Scholar 

  17. R D White, R E Robson and P Nicoletopoulos Eur. Phys. J. D 66 117 (2012)

    Article  ADS  Google Scholar 

  18. A J Briant, A J Wagner and J M Yeomans Phys. Rev. E 69 031602 (2004)

    Article  ADS  Google Scholar 

  19. W F Huang, Y Li and Q S Liu Chin. Sci. Bull. 52 3319 (2007)

    Article  Google Scholar 

  20. A Kawasaki, J Onishi and Y Chen Comp. Math. Appl. 55 1492 (2007)

    Article  MathSciNet  Google Scholar 

  21. G R McNamara and G Zanetti Phy. Rev. Lett. 61 2332 (1988)

    Article  ADS  Google Scholar 

  22. X Shan, X F Yuan and H Chen J. Fluid Mech. 550 413 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  23. P C Philippi, L A Hegele, L O E dos Santos and R Surmas Phys. Rev. E, 73 056702 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  24. M C Sukop and D T Thorne Lattice Boltzmann Modeling (Berlin: Springer-Verlag) (2006)

    Google Scholar 

  25. Z Y Shi, G H Hu and Z W Zhou Acta Phys. Sin. 59 2595 (2010)

    Google Scholar 

  26. Q L Ding, D G Wang and L L Wang J. Hydraul. Eng. 8 991 (2010)

    Google Scholar 

  27. X Chen, Z G Sun and G Xi J. Xi’an Jiaotong Univ. (China) 46 115 (2012)

    Google Scholar 

  28. S H Chen and J F Dong J. Cent. South Univ. 17 924 (2010)

    Article  Google Scholar 

  29. G W Koen, H W Joost and E Antonin Phys. Rev. E 85 055301 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grant No. 5077515.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q. Z. Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J.L., Liu, Q.Z. & Meng, S.J. Numerical simulation of oscillation phenomenon for droplet spreading on solid surface by lattice Boltzmann method. Indian J Phys 90, 589–594 (2016). https://doi.org/10.1007/s12648-015-0785-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-015-0785-6

Keywords

PACS Nos.

Navigation