Skip to main content
Log in

Density functional theory calculations on conformational, spectroscopic and electrical properties of 3-(2,3-dimethoxyphenyl)-1-(pyridin-2-yl)prop-2-en-1-one: a potential nonlinear optical material

  • Original paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Quantum chemical calculations of the ground state energy, the highest and lowest energy conformers and vibrational wavenumbers of 3-(2,3-dimethoxyphenyl)-1-(pyridin-2-yl)prop-2-en-1-one have been performed by using Gaussian 09 program. B3LYP and HSEH1PBE levels of density functional theory with the 6-311++G(d,p) basis set have been used to perform above-mentioned calculations. The vibrational wavenumbers have been assigned on the basis of potential energy distribution analysis. Stability of the molecule arising from hyper-conjugative interactions and charge delocalization has been analyzed using natural bond orbital analysis. The frontier molecular orbitals have been simulated, and obtained small energy gap between the highest occupied molecular orbital and lowest unoccupied molecular orbital energies has confirmed that charge transfer occurs within title compound. Nonlinear optical behavior of the title compound has been investigated by determining electric dipole moment, polarizability and hyperpolarizability. Finally, the molecular electrostatic potential surface and density of state have been simulated to find more reactive sites for electrophilic and nucleophilic attack.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H P Li et al. Chem. Phys. Lett. 444 80 (2007)

    Article  ADS  Google Scholar 

  2. P V Dhanaraj, N P Rajesh, G Vinitha and G Bhagavannarayana Mater. Res. Bull. 46 726 (2011)

    Article  Google Scholar 

  3. P Srinivasan, T Kanagasekaran, R Gopalakrishnan, G Bhagavannarayana and P Ramasamy Cryst. Growth Des. 6 1663 (2006)

    Article  Google Scholar 

  4. P Pandi, G Peramaiyan, R M Kumar, G Bhagavannarayana and R Jayavel Appl. Phys. A 112 711 (2013)

    Article  ADS  Google Scholar 

  5. K V Sashidhara, A Kumar, M Kumar, J Sarkar and S Sinha Bioorg. Med. Chem. Lett. 20 7205 (2010)

    Article  Google Scholar 

  6. H J Ravindra and K Chandrasekhara Appl. Phys. B 88 105 (2007)

    Article  ADS  Google Scholar 

  7. E D D’Silva, G K Podagatlapalli, S V Rao, D N Rao and S M Dharmaprakash Cryst. Growth Des. 11 5362 (2011)

    Article  Google Scholar 

  8. A K Singh, G Saxena, R Prasad and A Kumar J. Mol. Struct. 1017 26 (2012)

    Article  ADS  Google Scholar 

  9. E D Disilva, D N Rao, R Philip, R J Butcher and S M Dharmaprakash J. Phys. Chem. Solids 72 824 (2011)

    Article  ADS  Google Scholar 

  10. P Poornesh, K Ravi, G Umesh, P K Hegde, M G Manjunatha, K B Manjunatha and A V Adhikari Opt. Commun. 283 1519 (2010)

    Article  ADS  Google Scholar 

  11. B Gu, W Ji, X Huang and P S Patil Opt. Express 17 1126 (2009)

    Article  ADS  Google Scholar 

  12. B Ganapayya, A Jayarama, R Sankolli, V R Hathwar and S M Dharmaprakash J. Mol. Struc. 1007 175 (2012)

    Article  ADS  Google Scholar 

  13. M J Frisch et al. Gaussian 09, Revision D.01 (Wallingford, CT: Gaussian, Inc) (2009)

    Google Scholar 

  14. GaussView, Version 5, R Dennington, T Keith and J Millam (Shawnee Mission, KS: Semichem Inc) (2009)

  15. A D Becke J Chem. Phys. 98 5648 (1993)

    Article  ADS  Google Scholar 

  16. C Lee, W Yang and R G Parr Phys. Rev. B 37 785 (1988)

    Article  ADS  Google Scholar 

  17. J Heyd and G. Scuseria J. Chem. Phys. 121 1187 (2004)

    Article  ADS  Google Scholar 

  18. J Heyd and G E Scuseria J. Chem. Phys. 120 7274 (2004)

    Article  ADS  Google Scholar 

  19. J Heyd, J E Peralta, G E Scuseria and R L Martin J. Chem. Phys. 123 174101 (2005)

    Article  ADS  Google Scholar 

  20. J Heyd, G E Scuseria and M Ernzerhof J. Chem. Phys. 124 219906 (2006)

    Article  ADS  Google Scholar 

  21. M J Frisch, J A Pople and J S Binkley J. Chem. Phys. 80 3265 (1984)

    Article  ADS  Google Scholar 

  22. M H Jamróz Vibrational Energy Distribution Analysis VEDA4 (Warsaw) (2004)

  23. M H Jamróz and J C Dobrowolski J. Mol. Struct. 565 475 (2001)

    Article  ADS  Google Scholar 

  24. G Keresztury, S Holly, J Varga, G Besenyei, A Y Wang and J R Durig Spectrochim. Acta A 49 2007 (1993)

    Article  ADS  Google Scholar 

  25. D Avcı, A Başoğlu and Y Atalay Int. J. Quantum Chem. 109 328 (2009)

    Article  ADS  Google Scholar 

  26. N Dege, N Şenyüz, H Batı, N Günay, D Avcı, Ö Tamer and Y Atalay Spectrochim. Acta A 120 323 (2014)

    Article  Google Scholar 

  27. Ö Tamer, D Avcı and Y Atalay J. Appl. Spectrosc. 80 971 (2014)

    Article  ADS  Google Scholar 

  28. J B Foresman and E Frisch Exploring Chemistry with Electronic Structure Methods (Pittsburgh, PA, USA: Gaussian Inc) (1993)

    Google Scholar 

  29. M L Laury, M J Carlson and A K Wilson J. Comput. Chem. 33 2830 (2012)

    Article  Google Scholar 

  30. H Gökçe and S Bahçeli Spectrochim. Acta A 116 242 (2013)

    Article  Google Scholar 

  31. L J Bellamy The Infrared Spectra of Complex Molecules (New York: John Wiley) (1956)

    Google Scholar 

  32. N Sundaraganesan, H Saleem, S Mohan, M Ramalingam and V Sethuraman Spectrochim. Acta A 62 740 (2005)

    Article  ADS  Google Scholar 

  33. B Smith Infrared Spectral Interpretation, A Systematic Approach (Washington, DC: CRC Press) (1999)

    Google Scholar 

  34. M Gussoni, C Castiglioni, M N Ramos, M C Rui and G Zerbi J. Mol. Struct. 224 445 (1990)

    Article  ADS  Google Scholar 

  35. A Teimouri, A N Chermahini, K Taban and H A Dabbagh Spectrochim. Acta A 72 369 (2009)

    Article  ADS  Google Scholar 

  36. Ö Tamer, D Avcı and Y Atalay Spectrochim. Acta A 17 78 (2014)

    Article  ADS  Google Scholar 

  37. M Barthes, G De Nunzio and G Riber Synth. Met. 76 337 (1996)

    Article  Google Scholar 

  38. F Weinhold and C Landis Valency and Bonding: A Natural Bond Orbital Donor-Acceptor Perspective (Cambridge: Cambridge University Press) (2005)

    Book  Google Scholar 

  39. H Pir, N Günay, Ö Tamer, D Avcı and Y Atalay Spectrochim. Acta A 112 331 (2013)

    Article  ADS  Google Scholar 

  40. H Pir, N Günay, Ö Tamer, D Avcı, E Tarcan and Y Atalay Mater. Sci-Poland 31 357 (2013)

    Article  ADS  Google Scholar 

  41. J Chocholousova, V V Spirko and P Hobza Phys. Chem. Chem. Phys. 6 37 (2000)

    Article  Google Scholar 

  42. H Pir, N Gunay, D Avcı and Y Atalay Spectrochim. Acta A 96 916 (2012)

    Article  ADS  Google Scholar 

  43. Y Tao, L Han, Y Han and Z Liu Spectrochim. Acta A 137 892 (2015)

    Article  ADS  Google Scholar 

  44. B Kosar and C Albayrak Spectrochim. Acta A 78 160 (2011)

    Article  ADS  Google Scholar 

  45. R G Pearson Proceeding of the National Academy of Sciences 83 p 8440 (1986)

  46. N M O’Boyle, A L Tenderholt and K M Langner J. Comp. Chem. 29 839 (2008)

    Article  Google Scholar 

  47. D Avcı, H Cömert and Y Atalay J. Mol. Model. 14 161 (2008)

    Article  Google Scholar 

  48. H P Gumus, Ö Tamer, D Avcı and Y Atalay Spectrochim. Acta A 129 219 (2014)

    Article  ADS  Google Scholar 

  49. C Sridevi and G Velraj J. Mol. Struct. 1019 50 (2012)

    Article  ADS  Google Scholar 

  50. R S Mulliken J. Chem. Phys. 23 1833 (1955)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ö. Tamer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pir Gümüş, H., Tamer, Ö., Avcı, D. et al. Density functional theory calculations on conformational, spectroscopic and electrical properties of 3-(2,3-dimethoxyphenyl)-1-(pyridin-2-yl)prop-2-en-1-one: a potential nonlinear optical material. Indian J Phys 90, 79–89 (2016). https://doi.org/10.1007/s12648-015-0730-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-015-0730-8

Keywords

PACS Nos.

Navigation