Skip to main content
Log in

Contribution of high energy configurations to longitudinal and transverse form factors in p- and sd-shell nuclei

  • Original paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Longitudinal and transverse electron scattering form factors for some selected positive and negative parity states of stable odd-A nuclei (\(^{7}\)Li, \(^{13}\)C and \(^{17}\)O) in the p- and sd-shells are investigated by considering the higher energy configurations outside the p- and sd-shells. The higher energy configurations, referred to as core polarization effects, are considered by means of a microscopic theory that includes excitations from the core 1\(s\)-1p, 2\(s\)-1\(d\) orbits to the higher allowed orbits with 4\(\hbar \omega \) excitations. The calculations are performed in the p- and sd-shell model spaces by employing Cohen-Kurath, Reehal and Wildenthal interactions respectively, while the core polarization effects are calculated with the modified surface delta interaction as residual interaction. The predicted form factors are compared with the available experimental data and it is shown that the inclusion of the higher excited configurations is very essential in the calculations of the form factors and the reduced transition probabilities to obtain reasonable description of the data with no adjustable parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J A Pinston and J Genevey J. Phys G: Nucl. Part. Phys. 30 R57 (2004)

    Article  ADS  Google Scholar 

  2. Y Horikawa, T Hoshino and A Arima Nucl. Phys. A 278 297 (1977)

    Article  ADS  Google Scholar 

  3. H Sagawa and B A Brown Nucl. Phys. A 430 84 (1984)

    Article  ADS  Google Scholar 

  4. F A Majeed Phys. Scr. 85 065201 (2012)

    Article  ADS  Google Scholar 

  5. F A Majeed and F M Hussain Rom. Journ. Phys. 59 95 (2014)

  6. S Cohen and D Kurath Nucl. Phys. 73 1 (1965)

    Article  Google Scholar 

  7. A Cichocki et al. Phys. Rev. C 51 2406 (1995)

  8. T Sato, K Koshigiri and H Ohtsubo Z. Phys. A 320 507 (1985)

    Article  ADS  Google Scholar 

  9. T Sato, N Odagawa, H Ohtsubo and T S H Lee Phys. Rev. C 49 776 (1994)

    Article  ADS  Google Scholar 

  10. R A Radhi, A A Abdullah, Z A Dakhil and N M Adeeb Nucl. Phys. A 696 442 (2001)

    Article  ADS  Google Scholar 

  11. R A Radhi Nucl. Phys. A 707 56 (2002)

    Article  ADS  Google Scholar 

  12. R A Radhi Eur. Phys. J. A 16 381 (2003)

    Article  ADS  Google Scholar 

  13. R A Radhi Nucl. Phys. A 716 100 (2002)

    Article  ADS  Google Scholar 

  14. R A Radhi, A A Abdullah and A H Raheem Nucl. Phys. A 798 16 (2008)

    Article  ADS  Google Scholar 

  15. D C Zheng, J Vary and B R Barrett Phys. Rev. C 50 2841 (1994)

    Article  ADS  Google Scholar 

  16. D C Zheng, B R Barrett, J P Vary and W C Haxton Phys. Rev C 52 2488 (1995)

    Article  ADS  Google Scholar 

  17. B R Barrett, P Navratil and J P Vary Prog. Part. Nucl. Phys. 69 131 (2013)

    Article  ADS  Google Scholar 

  18. R A Radhi, N M Adeeb and A K Hashim J. Phys. G: Nucl. Part. Phys. 36 105102 (2009)

    Article  ADS  Google Scholar 

  19. B S Reehal and B H Wildenthal Part. Nucl. 6 137 (1973)

    Google Scholar 

  20. B A Brown et al. MSUNSCL Report No. 1289 (2004)

  21. S Karataklidis, B A Brown, K Amos and P J Dortmans Phys. Rev. C 55 2826 (1997)

    Article  ADS  Google Scholar 

  22. P J Brussaard and P W M Glaudemans Shell-Model Applications in Nuclear Spectrscopy (Amsterdam: North Holland) (1977)

    Google Scholar 

  23. B A Brown, R Radhi and B H Wildenthal Phys. Rep. 101 313 (1983)

    Article  ADS  Google Scholar 

  24. T de Forest Jr and J D Walecka Adv. Phys. 15 1 (1966)

    Article  ADS  Google Scholar 

  25. T W Donnelly and I Sick Rev. Mod. Phys. 56 461 (1984)

    Article  ADS  Google Scholar 

  26. H de Vries, C W de Jager and C de Vries At. Data Nucl. Data Tables 36 500 (1987)

    Article  Google Scholar 

  27. J Lichtenstadt et al. Phys. Lett. B 219 394 (1989)

    Article  ADS  Google Scholar 

  28. L Clausen, R J Peterson and R A Lindgren Phys. Rev. C 38 589 (1988)

    Article  ADS  Google Scholar 

  29. M Unkelbach and H M Hofmann Phys. Lett. B 261 211 (1991)

    Article  ADS  Google Scholar 

  30. J G L Booten, A G M van Hees, P W M Glaudemans and P J Brussaard Nucl. Phys. A 549 197 (1992)

    Article  ADS  Google Scholar 

  31. J G L Booten and A G M van Hees Nucl. Phys. A 569 510 (1994)

    Article  ADS  Google Scholar 

  32. R Yen, L S Cardman, D Kalinsky, J R Legg and C K Bockelman Nucl. Phys. A 235 135 (1974)

    Article  ADS  Google Scholar 

  33. D J Millener et al. Phys. Rev. C 39 14 (1989)

    Article  ADS  Google Scholar 

  34. D M Manley et al. Phys. Rev C 36 1700 (1987)

    Article  ADS  Google Scholar 

  35. C W De Jager, H De Vries and C De Vries At. Data Nucl. Data Tables 14 179 (1974)

    Article  Google Scholar 

  36. R A Radhi Eur. Phys. J. A 16 387 (2003)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

Authors are grateful to Prof. R. A. Radhi for helpful discussion and suggestion to improve the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. A. Majeed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majeed, F.A., Najim, L.A. Contribution of high energy configurations to longitudinal and transverse form factors in p- and sd-shell nuclei. Indian J Phys 89, 611–618 (2015). https://doi.org/10.1007/s12648-014-0622-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-014-0622-3

Keywords

PACS Nos.

Navigation