Skip to main content
Log in

Structural, electronic and optical properties of Zn1−xZrxO nanotubes: first principles study

  • Original paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

First-principles calculations are performed to determine the effects of zirconium doping on structural, electronic and optical properties of zinc oxide nanotubes. Dielectric tensor is derived within the random phase approximation and optical properties are calculated for both parallel and perpendicular electric field polarizations with respect to nanotube axis. Results show that for all impurity concentrations, the formation energy is negative; hence all doped systems are stable. Energy gap of zirconium-doped single walled zinc oxide nanotube is smaller than their pristine zinc oxide nanotube. Our results show that pristine zinc oxide nanotube is a direct gap semiconductor, while it is an indirect gap when zirconium is doped into zinc oxide nanotube. In Zn1−xZrxOs, the absorption edge has red shift to that of pure zinc oxide nanotube and is located at the visible region. Our results show optical anisotropy of pristine and zirconium-doped zinc oxide nanotube.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Y Li, X Zhao and W Fan J. Phys. Chem. C 115 3552 (2011)

    Article  Google Scholar 

  2. X Wang, W P Careg and S. Yee Sens. Actuators B 28 63 (1995)

    Article  Google Scholar 

  3. Y Ohaya, M Ueda and Y Takahashi Jpn. J. Appl. Phys. 35 4738 (1996)

    Article  Google Scholar 

  4. Y Natsume Thin Solid Films 372 30 (2000)

    Article  ADS  Google Scholar 

  5. G K Paul, S Bandyapadhyay and S K Sen Phys. Stat. Sol. A 191 509 (2002)

    Article  Google Scholar 

  6. Z K Tang, G K L Wong, P Yu, M Kawasaki, A Ohtomo and H koinuma Appl. Phys. Lett. 72 3270 (1998)

    Google Scholar 

  7. S Shionoya and W M Yen Phosphor Handbook (Boca Raton: CRC Press) (1999)

    Google Scholar 

  8. B O Regan and M Gratzel Nature 353 737 (1991)

    Article  ADS  Google Scholar 

  9. M H Huang et al. Science 292 1897 (2001)

    Article  ADS  Google Scholar 

  10. M S Arnold, P Avouris, Z W Pan and Z L Wang J. Phys. Chem. B 107 659 (2003)

    Article  Google Scholar 

  11. G C Yi, C Wang and W I Park Semicond. Sci. Technol. 20 22 (2005)

  12. Z L Wang Mater Today 7 26 (2004)

  13. X Zhang, Y Zhang, J Xu, Z Wang, X Chen and D Yu Appl. Phys. Lett. 87 123111 (2005)

    Article  ADS  Google Scholar 

  14. C Rath, S Singh, P Mallick, D Pandey, N P Lalla and N C Mishra Indian J. Phys. 83 415 (2009)

    Article  ADS  Google Scholar 

  15. J Manam, S Das and A Isaac Indian J. Phys. 83 1407 (2009)

    Article  ADS  Google Scholar 

  16. G Mandal and T Ganguly Indian J. Phys. 85 1229 (2011)

    Article  ADS  Google Scholar 

  17. J J S Wu, C Liu, C T Wu, K H Chen and L C Chen Appl. Phys. Lett. 81 1312 (2002)

    Google Scholar 

  18. X H Zhang et al. J. Phys. Chem. B 107 10114 (2003)

    Article  Google Scholar 

  19. Y J Xing et al. Appl. Phys. Lett. 83 1689 (2003)

    Article  ADS  Google Scholar 

  20. Z C Tu and X Hu Phys. Rev. B 74 035434 (2006)

    Article  ADS  Google Scholar 

  21. A L He, X Q Wang, Y Q Fan and Y P Feng J. Appl. Phys. 108 084308 (2010)

    Article  ADS  Google Scholar 

  22. R Moradian and M Shahrokhi Phys. E 44 1760 (2012)

    Article  ADS  Google Scholar 

  23. R Moradian and M Shahrokhi J. Phys. Chem. Solids 74 1063 (2013)

    Article  ADS  Google Scholar 

  24. M j K Yadav, M Ghosh, R Biswas, A K Raychaudhuri and A Mookerjee Phys. Rev. B 76 195450 (2007)

  25. F Wang, B Liu, Z Zhang and S Yuan Phys. E 41 879 (2009)

    Google Scholar 

  26. F Wang et al. Appl. Surf. Sci. 254 6983 (2008)

    Article  ADS  Google Scholar 

  27. M Lv, X Xiu, Z Pang, Y Dai and S Han Appl. Surf. Sci. 252 5687 (2006)

    Article  ADS  Google Scholar 

  28. S B Qadri et al. Thin Solid Films 750 377 (2000)

    Google Scholar 

  29. V Gokulakrishnan, S Parthiban, K Jeganathan and K Ramamurthi Appl. Surf. Sci. 257 9068 (2011)

    Article  ADS  Google Scholar 

  30. J Zhang and et al Nanoscale Res. Lett. 6 587 (2011)

    Article  ADS  Google Scholar 

  31. P Blaha, D Singh, P I Sorantin and K Schwarz Phys. Rev. B 46 1321 (1992)

    Article  Google Scholar 

  32. P Blaha and K Schwarz WIEN2k University of Technology Austria, http://www.wien2k.at/,Vienna. (2002)

  33. J P Perdew, K Burke and M Ernzerhof Phys. Rev. Lett. 77 3865 (1996)

    Article  ADS  Google Scholar 

  34. M Lv et al. Thin Solid Films 516 2017 (2008)

    Article  ADS  Google Scholar 

  35. V Walle and C G Neugebauer J. Appl. Phys. 95 3851 (2004)

    Article  ADS  Google Scholar 

  36. F Wooten Optical Properties of Solids (New York: Academic Press) (1972)

  37. C Ambrosch-Draxl and J O Sofo Comput. Phys. Commun. 175 1 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Shahrokhi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahrokhi, M., Moradian, R. Structural, electronic and optical properties of Zn1−xZrxO nanotubes: first principles study. Indian J Phys 89, 249–256 (2015). https://doi.org/10.1007/s12648-014-0567-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-014-0567-6

Keywords

PACS Nos.

Navigation