Skip to main content
Log in

Modelling of geomagnetically induced currents during geomagnetic storms using geoelectric fields and auroral electrojet indices

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The effects of space weather on ground based technology mostly occur due to the varying geomagnetic field during geomagnetic storms, producing geomagnetically induced current (GIC). Space weather storms involve intense and rapidly varying electric currents in the ionosphere, which create geoelectric and geomagnetic fields at the Earth’s surface. In this study we have investigated some intense geomagnetic storms: September 18th, 2000; March 31th, 2001; October 21st, 2001; November 6th and 24th, 2001; October 29th and 31st, 2003 and November 9th, 2004. The electric field for each day has been computed using ground conductivity and geomagnetic recordings. The conductivity models are determined by least square fit between the observed and predicted GIC values. Our results show that GIC are strongly correlated with the geoelectric field, and also with eastward and westward auroral electrojet indices and time derivatives of the horizontal geomagnetic field. Root mean square error statistical test has been employed to evaluate the accuracy of the models used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. D Boteler, R Pirjola and H Nevanlinna Adv. Space Res. 22 17 (1998)

    Article  ADS  Google Scholar 

  2. D N Baker, A J Klimas, R L McPherron and J Buechner J. Geophys. Res. 17 41 (1990)

    Google Scholar 

  3. Y Kamide and W Baumjohann J. Chem. Phys. 23 178 (1993)

    Google Scholar 

  4. M P Freeman, N W Watkins and D J Riley J. Geophys. Res. 27 1087 (2000)

    Google Scholar 

  5. G Consolini and P De Michelis J. Geophys. Res. 32 1029 (2005)

    Google Scholar 

  6. A Viljanen and R Pijola J. Surv. Geophys. 15 383 (1994)

    Article  ADS  Google Scholar 

  7. R Pirjola IEEE Trans. Plasma Sci. 28 1869 (2000)

    Article  ADS  Google Scholar 

  8. R Pirjola J. Atmos. Terr. Phys. 64 1967 (2002)

    Article  ADS  Google Scholar 

  9. R Pirjola and A Viljanen Ann. Geophys. 16 1434 (1998)

    Article  ADS  Google Scholar 

  10. M Lehtinen and R Pirjola Ann. Geophys. 3 479 (1985)

    Google Scholar 

  11. A Pulkkinen, R Pirjola, D Boteler, A Viljanen and I Yegerov J. App. Geophys. 48 233 (2001)

    Article  Google Scholar 

  12. P Hejda and J Bochnicek Ann. Geophys. 23 3089 (2005)

    Article  ADS  Google Scholar 

  13. A Pulkkinen, A Viljanen, K Pajunpaa and R Pirjola J. App. Geophys. 48 221 (2001b)

    Google Scholar 

  14. L Trichtchenko and D H Boteler IEEE Trans. Plasma Sci. 32 1459 (2004)

    Article  ADS  Google Scholar 

  15. M Wik, A Viljanen, R Pirjola, A Pulkkinen, P Wintoft and H Lundstedt Space Weather 6 456 (2008)

    Article  Google Scholar 

  16. J Watermann Ann. Geophys. 5 269 (2007)

    Google Scholar 

  17. J Koen and T Gaunt IEEE Trans. Plasma Sci. 23 97 (2002)

    Google Scholar 

  18. B H Ahn, B A Emery, H W Kroehl and Y Kamide J. Geophys. Res. 104 10031 (1999)

    Article  ADS  Google Scholar 

  19. W Baumjohann Adv. Space Res. 10 55 (1983)

    Google Scholar 

  20. L F Bargatze, D N Baker, L McPherron and E W Hones J. Geophys. Res. 90 6387 (1985)

    Article  ADS  Google Scholar 

  21. D Vassiliadis, A J Klimas, D N Baker and D A Roberts, J. Geophys. Res. 100 3495 (1985)

    Article  ADS  Google Scholar 

  22. M Mareschal Surv. Geophys. 8 261 (1986)

    Article  ADS  Google Scholar 

  23. J R Wait and K P Spices Can. J. Phys. 27 2731 (1969).

    Article  ADS  Google Scholar 

  24. R Pirjola J. Geophys. Res., 18 1 (1982)

    Google Scholar 

  25. A Viljanen, A Pulkkinen, O Amm, R Pirjola, T Korja and BEAR Working Group Ann. Geophys. 22 101 (2004)

    Article  ADS  Google Scholar 

  26. A Viljanen IEEE Trans. Power Deliv. 13 1285 (1998)

    Article  Google Scholar 

  27. A Viljanen, H Nevanlinna, K Pajunpaa and A Pulkkinen Ann. Geophys. 19 1107 (2001)

    Article  ADS  Google Scholar 

  28. D P S Chauhan, D P Tiwari, A K Tripathi, S K Pandey and S C Dubey Indian J. Phys. 84 881 (2010).

    Article  ADS  Google Scholar 

  29. A Raizada, S Kumar and S Khare Indian J. Phys. 84 183 (2010).

    Article  ADS  Google Scholar 

  30. J L Kisabeth and G Rostoker J. Geophys Res. 78 5573 (1973)

    Article  ADS  Google Scholar 

  31. L P Bolduc, D Langlois, D Boteler and R Pirjola IEEE Trans. Power Deliv. 15 272 (2000)

    Article  Google Scholar 

  32. A Viljanen, O Amm, R and R Pirjola J. Geophys. Res. 104 28 (1999)

  33. A Viljanen J. Geophys. Res. 24 631 (1997)

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the World Data Centre (WDC) for geomagnetism, and Space Physics Interactive Data Resources (SPIDR) for AL and AU indices data. We would also like to thank Dr Ari Viljanen, from the Finnish Meteorological Institute, Space Research Unit, Helsinki, Finland, for the efficient and cheerful provision of geomagnetic field and geomagnetically Induced Current data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. O. Falayi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Falayi, E.O., Beloff, N. Modelling of geomagnetically induced currents during geomagnetic storms using geoelectric fields and auroral electrojet indices. Indian J Phys 86, 423–429 (2012). https://doi.org/10.1007/s12648-012-0108-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-012-0108-0

Keywords

PACS Nos.

Navigation