Skip to main content

Advertisement

Log in

Molecular dynamics simulation of HIV-protease with polarizable and non-polarizable force fields

  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The effect of polarization in biomolecular force field is investigated by performing Molecular Dynamics (MD) simulation of HIV-protease by using two AMBER force fields, namely ff99 (non-polarizable) and ff02 (polarizable). The results of simulation show that the overall structural fluctuation of HIV-protease is reduced in the polarizable simulation. Comparison with the NMR order parameters with the calculated values shows that although some residues are less flexible in the ff02 simulation, the dynamics of two β-hairpins (flaps), the most flexible part of the protein, is relatively insensitive to the effect of polarization. The flap-active site distance, a measure of flap opening, is distinctly more in the non-polarizable simulation. The water count and radial distribution functions are investigated near a representative residue of three types — charged, polar and hydrophobic. Both water count and radial distribution function differ significantly near the charged residue (catalytic Asp25) between the force fields. However, the water movement is similar near the polar (Ser37) and hydrophobic (Ile85) residues. The preliminary results of this investigation show that polarization is likely to influence both global and specific local motions of protein and solvent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M Karplus and J A McCammon Nat. Struct. Biol. 9 646 (2002)

    Article  Google Scholar 

  2. J Behler, R Martonak, D Donadio and M Parrinello Phys. Rev. Lett. 100 185501 (2008)

    Google Scholar 

  3. K Y Sanbonmatsu, S Joseph and C Tung PNAS 102 44 (2005)

    Article  Google Scholar 

  4. B Chanda, O K Asamoah, R Blunck, B Roux and F Bezanilla Nature 436 852 (2005)

    Article  ADS  Google Scholar 

  5. A Arkhipov, P L Freddolino, K Imada, K Namba and K Schulten Biophys. J. 91 4589 (2006)

    Article  ADS  Google Scholar 

  6. Daan Frenkel and Berend Smit Understanding Molecular Simulation (Academic Press. 2nd ed.) (2001)

  7. U H E Hansmann and Y Okamoto Curr. Opin. in Struct. Biol. 9 177 (1999)

    Article  Google Scholar 

  8. F D Rienzo, R R Gabdoulline, M C Menziani, P G D Benedetti and R C Wade Biophys. J. 81 3090 (2001)

    Article  Google Scholar 

  9. A D MacKerell, D Bashford, M Bellot, R L Dunbrack, J D Evanseck, M J Field, S Fischer, J Gao, H Guo, S Ha, D Joseph-MacCarthy, L Kuchnir, K Kuczera, F T K Lau, C Mattos, S Michnick, T Ngo, D T Nguyen, B Prodhom, W E I Reiher, B Roux, M Schlenkrich, J C Smith, R Stote, J Straub, M Watanabe, J Wiorkiewicz-Kuczera, D Yin and M Karplus J. Phys. Chem. A102 3586 (1998)

    Google Scholar 

  10. W D Cornell, P Cieplak, C I Bayly, I R Gould, K M Merz, D M Ferguson, D C Spellmeyer, T Fox, J W Caldwell and P A Kollman J. Am. Chem. Soc. 117 5179 (1995)

    Article  Google Scholar 

  11. G A Kaminski, H A Stern, B J Berne, R A Friesner, Y X Cao, R B Murphy, R Zhou and T A Halgren J. Comput. Chem. 16 1515 (2002)

    Article  Google Scholar 

  12. P Cieplak, J Caldwell and P A Kollman J. Comp. Chem. 22 1048 (2001)

    Article  Google Scholar 

  13. P Ren and J W Ponder J. Phys. Chem. B107 5933 (2003)

    Google Scholar 

  14. B Kim, T Young, E Harder, R A Friesner and B J Berne J. Phys. Chem. B109 16529 (2005)

    Google Scholar 

  15. J Wang, P Cieplak and P Kollman J. Comp. Chem. 21 1049 (2000)

    Article  Google Scholar 

  16. P Cieplak, J Caldwell and P Kollman J. Comp. Chem. 22 1048 (2001)

    Article  Google Scholar 

  17. W R Scott and C A Schiffer Structure 8 1259 (2000)

    Article  Google Scholar 

  18. V Hornak, A Okur, R C Rizzo and C Simmerling Proc. Natl. Acad. Sci. USA 103 915 (2006)

    Article  ADS  Google Scholar 

  19. J R Collins, S K Burt and J W Erickson Nat. Str. Biol. 2 334 (1995)

    Article  Google Scholar 

  20. A L Perryman, J H Lin and J A McCammon Protein Sci. 13 1108 (2004)

    Article  Google Scholar 

  21. H Ode, S Neva, M Hata, W Sugiura and T Hoshino J. Am. Chem. Soc. 128 7887 (2006)

    Article  Google Scholar 

  22. P Bandyopadhyay and B R Meher Chem. Biol. Drug. Des. 67 155 (2006)

    Article  Google Scholar 

  23. W L Jorgensen, J Chandrasekhar, J Madura and M L Klein J. Chem. Phys. 79 926 (1983)

    Article  ADS  Google Scholar 

  24. J W Caldwell and P A Kollman J. Phys. Chem. 99 6208 (1995)

    Article  Google Scholar 

  25. D A Case, T A Darden, T E Cheathamlll, C L Simmerling, J Wang, R E Duke, R Luo, K M Merz, B Wang, D A Pearlman, M Crowley, S Brozell, V Tsui, H Gohlke, J Mongan, V Hornak, G Cui, P Beroza, C Schafmeister, J Caldwell, W Ross, P A Kollman AMBER 8 (San Francisco, CA: University of California) (2004)

    Google Scholar 

  26. S Spinelli, Q Z Liu, P M Alzari, P H Hirel and R J Poljak Biochimie 73 1391 (1991)

    Article  Google Scholar 

  27. U Essmann, L Pereea, M L Berkowitz and T A Darden J. Chem. Phys. 103 8577 (1995)

    Article  ADS  Google Scholar 

  28. H J C Berendsen, J P M Postma, W F Van Gunsteren, A Dinola and J R Haak J. Chem. Phys. 81 3684 (1984)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradipta Bandyopadhyay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meher, B.R., Satish Kumar, M.V. & Bandyopadhyay, P. Molecular dynamics simulation of HIV-protease with polarizable and non-polarizable force fields. Indian J Phys 83, 81–90 (2009). https://doi.org/10.1007/s12648-009-0005-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-009-0005-3

Keywords

PACS Nos.

Navigation