Skip to main content
Log in

Validation of the ASTM E1898-21 Method with Estimation of Analytical Uncertainty for the Determination of Silver by FAAS

  • Original Paper
  • Published:
MAPAN Aims and scope Submit manuscript

Abstract

Silver is one of the most important precious metals in mining and metallurgy. Thus, the methods used to determine its concentration are critical. The objective of this research work was to validate and estimate the expanded uncertainty of the ASTM-E1898-21 method for silver determination by flame atomic absorption spectroscopy. The methodology used for the validation and estimation of the expanded uncertainty is recommended by international regulations. The validation results showed precision values under repeatability conditions with variations in the range of 1.67–2.04%, whereas the accuracy showed values of 0.0131–0.1445 for the bias evaluated through Z-score and recovery percentages from 100.7 to 104.8. The validation of the analytical method was confirmed using a certified reference material (CDN-GS-1Z), and precision values under repeatability conditions of 1.677 for the percentage of variation and recovery percentages of 100.65 were obtained. Further, the evaluation of the relative combined uncertainty showed values from 0.0046 to 0.1166 for the different sources of uncertainties evaluated. On the other hand, the expanded uncertainty obtained was 2.572 mg/L of silver with a reliability factor of 95% (k = 2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Y.H. Liu, B. Wan and D.S. Xue, Sample digestion and combined preconcentration methods for the determination of ultra-low gold levels in rocks. Molecules., 8 (2019) 1778. https://doi.org/10.3390/molecules24091778.

    Article  Google Scholar 

  2. G.A. Palyanova, Gold and silver minerals in sulfide ore. Geol. Ore Deposits., 62 (2020) 383–406. https://doi.org/10.1134/S1075701520050050.

    Article  ADS  Google Scholar 

  3. H. Dianhao, D. Xiaoshi, W. Chengyu and Z. Changjiang, Mineralogy and mode of occurrence of gold, silver and bismuth of the caijiaying lead-zine-silver deposit, Hebei Province. Acta Geologica Sinica English Edition., 4 (1991) 371–385. https://doi.org/10.1111/j.1755-6724.1991.mp4004003.x.

    Article  Google Scholar 

  4. J. Calderon-Rodarte, A. López-Valdivieso, A. Aragón-Piña, J.L. Reyes-Bahena, M.I.L. Gallegos-García, A. Zapata-Velázquez and A. Robledo-Cabrera, Mineralogy and silver distribution in argentiferous manganese ores from La Encantada mines in Mexico. Physicochem. Probl. Mineral Process., 53 (2017) 591–600. https://doi.org/10.5277/ppmp170146.

    Article  Google Scholar 

  5. W.D. Birch, Mineralogy of the Silver King deposit, Omeo, Victoria. Proc. R. Soc. Vic., 129 (2017) 41–52. https://doi.org/10.1071/RS17004.

    Article  Google Scholar 

  6. B. Drif, Y. Taha, R. Hakkou and M. Benzaazoua, Recovery of residual silver-bearing minerals from low-grade tailings by froth flotation: the case of zgounder mine. Morocco. Minerals., 8 (2018) 273. https://doi.org/10.3390/min8070273.

    Article  ADS  Google Scholar 

  7. L.J. Swinkels, M. Burisch, C.M. Rossberg, M. Oelze, J. Gutzmer and M. Frenzel, Gold and silver deportment in sulfide ores–a case study of the Freiberg epithermal Ag-Pb-Zn district, Germany. Minerals Eng., 174 (2021) 107235. https://doi.org/10.1016/j.mineng.2021.107235.

    Article  Google Scholar 

  8. I. De La Calle, N. Cabaleiro, M. Costas, F. Pena, S. Gil, I. Lavilla and C. Bendicho, Ultrasound-assisted extraction of gold and silver from environmental samples using different extractants followed by electrothermal-atomic absorption spectrometry. Microchem. J., 97 (2011) 93–100. https://doi.org/10.1016/j.microc.2010.07.011.

    Article  Google Scholar 

  9. A. Das and M.C. Saha, Rapid procedure for the quantitative determination of gold and base metals by graphite furnace and flame atomic absorption spectrometry. Atomic Spectrosc., 34 (2013) 60–65. https://doi.org/10.46770/AS.2013.02.004.

    Article  Google Scholar 

  10. D. Díaz, D.W. Hahn and A. Molina, Quantification of gold and silver in minerals by laser-induced breakdown spectroscopy. Spectrochim. Acta Part B Atomic Spectrosc., 136 (2017) 106–115. https://doi.org/10.1016/j.sab.2017.08.008.

    Article  ADS  Google Scholar 

  11. B. Drif, Y. Taha, R. Hakkou and M. Benzaazoua, Recovery of residual silver-bearing minerals from low-grade tailings by froth flotation: the case of zgounder mine, morocco. Minerals., 8 (2018) 273. https://doi.org/10.3390/min8070273.

    Article  ADS  Google Scholar 

  12. N. Petrović, D. Buđelan, S. Cokić and B. Nešić, The determination of the content of gold and silver in geological samples. J. Serbian Chem. Soc., 66 (2001) 45–52. https://doi.org/10.2298/JSC0101045P.

    Article  Google Scholar 

  13. Y. Wang, L.A. Baker and I.D. Brindle, Determination of gold and silver in geological samples by focused infrared digestion: a re-investigation of aqua regia digestion. Talanta., 148 (2016) 419–426. https://doi.org/10.1016/j.talanta.2015.11.019.

    Article  Google Scholar 

  14. R. Shen, Determination of silver in copper concentrate by atomic absorption spectrometry. Adv. Mater. Sci., 5 (2021) 4–6. https://doi.org/10.26789/AMS.2021.01.002.

    Article  Google Scholar 

  15. W. Helmeczi, E. Helmeczi, L.A. Baker, Y. Wang and I.D. Brindle, Development of a general acid method for the digestion of gold ore samples together with a comparison of extraction solvents for gold and determination by microwave-induced plasma-atomic emission spectrometry (MIP-AES). J. Anal. Atomic Spectrom., 33 (2018) 1336–1344. https://doi.org/10.1039/C8JA00136G.

    Article  Google Scholar 

  16. ASTM E1898-21. Standard test method for determination of silver in copper concentrates by flame atomic absorption spectrometry. ASTM International. (2021). https://doi.org/10.1520/E1898-21

  17. ISO/IEC 17025:2017. General requirements for the competence of testing and calibration laboratories. (2017). https://www.iso.org/obp/ui/#iso:std:iso-iec:17025:ed-3:v1:en

  18. User manual. Agilent tecnology flame atomic absorption spectroscopy. method development eprimer. Santa Clara, CA. United State. (2021). https://www.agilent.com/cs/library/brochures/AA-5991-8145EN-methods-primer.pdf

  19. D. Bohrer, P.C. do Nascimento, R. Binotto and E.J. Becker, Influence of the glass packing on the contamination of pharmaceutical products by aluminum. Part II1: interaction container-chemicals during the heating for sterilization. J. Trace Elem. Med. Biol., 17 (2003) 107–115. https://doi.org/10.1016/S0946-672X(03)80006-8.

    Article  Google Scholar 

  20. R. Kadis, Evaluation of measurement uncertainty in volumetric operations: the tolerance-based approach and the actual performance-based approach. Talanta., 64 (2004) 167–173. https://doi.org/10.1016/j.talanta.2004.02.00.

    Article  Google Scholar 

  21. Swati, S.S. Tripathy, R.K. Saxena et al., Development and validation of method with evaluation of measurement uncertainty for the speciation analysis of chromium by ion chromatography. MAPAN., 30 (2015) 131–137. https://doi.org/10.1007/s12647-014-0130-0.

    Article  Google Scholar 

  22. E. Batista, L. Pinto, E. Filipe and A.M.H. van der Veen, Calibration of micropipettes: test methods and uncertainty analysis. Measurement., 40 (2007) 338–342. https://doi.org/10.1016/j.measurement.2006.05.012.

    Article  ADS  Google Scholar 

  23. Magnusson, B. and Ornemark, U. Eds. Eurachem guide: the fitness for purpose of analytical methods, a laboratory guide to method validation and related topics, United Kingdom, 2nd edition, (2014). http://www.eurachem.org

  24. Barwick, V. Preparation of calibration curves. A guide to best practice, Milestone Reference: KT2/1.3 LGC/VAM/2003/032. (2003), 1–27. https://doi.org/10.13140/RG.2.2.36338.76488

  25. J.J. Nielsen, Microsoft Excel, Microsoft Official Academic Course. Wiley (2016).

    Google Scholar 

  26. M. Thompson, S.L.R. Ellison and R. Wood, International union of pure and applied chemistry technical report. Harmonized guidelines for single-laboratory validation of methods of analysis (IUPAC Technical Report). Pure Appl. Chem., 74 (2002) 835–855. https://doi.org/10.1351/pac200274050835.

    Article  Google Scholar 

  27. S.R.L. Ellison, Implementing measurement uncertainty for analytical chemistry: the Eurachem guide for measurement uncertainty. Metrologia., 51(2014) (2014) 199–205. https://doi.org/10.1088/0026-1394/51/4/S199.

    Article  ADS  MathSciNet  Google Scholar 

  28. Ellison S.L.R., and Williams, A. EURACHEM/CITAC guide CG 4, quantifying uncertainty in analytical measurement, United Kingdom, 3rd edition. (2012). http://www.eurachem.org/images/stories/Guides/pdf/QUAM2012_P1.pdf

  29. J. Park, G. Nam and J.O. Choi, Parameters in cause and effect diagram for uncertainty evaluation. Accreditat. Qual. Assur., 16 (2011) 325–326. https://doi.org/10.1007/s00769-011-0763-4.

    Article  Google Scholar 

  30. S. Basak and D. Kundu, Evaluation of measurement uncertainty in determination of lead in glass materials by a standard complexometric method. MAPAN-J. Metrol. Soc. India., 27 (2012) 175–182. https://doi.org/10.1007/s12647-012-0027-8.

    Article  Google Scholar 

  31. M. Solaguren-Beascoa Fernández, V. Ortega López and R. Serrano López, On the uncertainty evaluation for repeated measurements. MAPAN., 29 (2014) 19–28. https://doi.org/10.1007/s12647-013-0057-x.

    Article  Google Scholar 

  32. K. Gates, N. Chang, I. Dilek, H. Jian, S. Pogue and U. Sreenivasan, The uncertainty of reference standards, a guide to understanding factors impacting uncertainty, uncertainty calculations, and vendor certifications. J. Anal. Toxicol., 33(2009) (2009) 532–539. https://doi.org/10.1093/jat/33.8.532.

    Article  Google Scholar 

  33. A.G. González and M.A. Herrador, A practical guide to analytical method validation, including measurement uncertainty and accuracy profiles. Trends Anal. Chem., 26(2007) (2007) 227–238. https://doi.org/10.1016/j.trac.2007.01.009.

    Article  Google Scholar 

  34. W.I. Mortada, Z.A.A. Ali and M.M. Hassanien, Cloud point extraction of Pd (II), Au (III), and Ag (I) prior to their determination by graphite furnace atomic absorption spectrometry. Can. J. Chem., 91 (2013) 1219–1224. https://doi.org/10.1139/cjc-2013-0250.

    Article  Google Scholar 

  35. J. Abolhasani, M. Amjadi and K.E. Ghorbani, Ultra-trace determination of copper and silver environmental samples by using ionic liquid-based single drop microextraction-electrothermal atomic absorption spectrometry. J. Chem. Health Risks., 3 (2013) 29–42. https://doi.org/10.22034/JCHR.2018.544036.

    Article  Google Scholar 

  36. M.C. Saha, R. Baskey and S. Lahiri, Determination of Ag and Cd in soil and sediment samples by graphite furnace atomic absorption spectrometry (GFAAS). Atomic Spectrosc., 36 (2015) 177. https://doi.org/10.46770/AS.2015.04.005.

    Article  Google Scholar 

  37. M. Resano, E. Garcia-Ruiz, M. Aramendía and M.A. Belarra, Solid sampling-graphite furnace atomic absorption spectrometry for Hg monitoring in soils. Performance as a quantitative and as a screening method. J. Anal. Atomic Spectrom., 20 (2005) 1374–1380. https://doi.org/10.1039/B509645F.

    Article  Google Scholar 

  38. K.T. Naeemullah, H.I. Afridi, F. Shah, S.S. Arain, K.D. Brahman, J. Ali and M.S. Arain, Simultaneous determination of silver and other heavy metals in aquatic environment receiving wastewater from industrial area, applying an enrichment method. Arab. J. Chem., 9 (2016) 105–113. https://doi.org/10.1016/J.ARABJC.2014.10.027.

    Article  Google Scholar 

  39. Fraser, A. W. Minimising Uncertainty in Measurement and Improving Limit of Detection in Gold Bearing Materials from Concentrations Predicted by Linear Regression in Atomic Absorption Spectrometry (Doctoral dissertation, University of Johannesburg (South Africa)). (2015).

  40. B. Leśniewska, K. Kisielewska, J. Wiater et al., Fast and simple procedure for fractionation of zinc in soil using an ultrasound probe and FAAS detection. Validation of the analytical method and evaluation of the uncertainty budget. Environ Monit Assess., 188 (2016) 1–13. https://doi.org/10.1007/s10661-015-5020-6.

    Article  Google Scholar 

  41. N. Singh, A rugged, precise and accurate new gravimetry method for the determination of gold: an alternative to fire assay method. Springerplus., 16(1) (2012) 14. https://doi.org/10.1186/2193-1801-1-14.

    Article  Google Scholar 

  42. M.A. Khorshed, Method validation of trace elements in water by atomic absorption spectrometer determination. J. Plant Prot. Pathol., 3 (2012) 239–251. https://doi.org/10.21608/JPPP.2012.83757.

    Article  Google Scholar 

  43. J.C. Damasceno and P.R.G. Couto, Methods for Evaluation of Measurement Uncertainty. In: A. Anil (ed) Metrology, InTech (2018). https://doi.org/10.5772/intechopen.74873.

    Chapter  Google Scholar 

  44. S. Yadav, G. Mandal, V.K. Jaiswal et al., 75th foundation day of CSIR-national physical laboratory: celebration of achievements in metrology for national growth. MAPAN., 36 (2021) 1–32. https://doi.org/10.1007/s12647-021-00442-4.

    Article  Google Scholar 

  45. A.M. García-Alegría, M.G. Canez-Carrasco, M. Serna-Felix, K.K. Encinas Soto and A. Gomez-Alvarez, Estimation of uncertainty in the determination of serum electrolytes (Na, K, Ca, Mg) by flame atomic absorption spectroscopy. MAPAN., 33 (2018) 99–112. https://doi.org/10.1007/s12647-017-0244-2.

    Article  Google Scholar 

  46. A.M. García-Alegría, A. Gómez-Álvarez, I. Anduro-Corona, A. Burgos-Hernández, E. Ruiz-Bustos, R. Canett-Romero and H.F. Astiazaran-Garcia, Estimation of the expanded uncertainty of an analytical method to quantify aluminum in tissue of Sprague Dawley rats by FAAS and ETAAS. MAPAN., 32 (2017) 131–141. https://doi.org/10.1007/s12647-017-0203-y.

    Article  Google Scholar 

  47. A.B. Shehata, R.N. Yamani and I.F. Tahoun, Intra- and interlaboratory approach for certification of reference materials for assuring quality of low-alloy steel measurement results. MAPAN., 34 (2019) 259–266. https://doi.org/10.1007/s12647-019-00307-x.

    Article  Google Scholar 

  48. P.S. Remya Devi, N. Ajith, T.A. Chavan et al., Preparation of in-house calibration standard solutions for Mn, Co and their assay using nuclear analytical techniques. MAPAN., 37 (2022) 631–640. https://doi.org/10.1007/s12647-022-00571-4.

    Article  Google Scholar 

  49. M. Khalid, Gold cyanidation: gold associated with silver minerals embedded within base-metal sulphide matrices. Thesis. Université Laval, Quebec, Canada (2017).

    Google Scholar 

Download references

Acknowledgements

The authors appreciate the support granted by the Metallurgical Technological Laboratory, S.A de C.V. Hermosillo, Sonora, Mexico, to carry out this research work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rodrigo Martínez-Peñuñuri or Alejandro Monserrat García-Alegría.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martínez-Peñuñuri, R., Vázquez-Bustamante, P., Montoya-Blumenkron, M. et al. Validation of the ASTM E1898-21 Method with Estimation of Analytical Uncertainty for the Determination of Silver by FAAS. MAPAN 38, 1005–1018 (2023). https://doi.org/10.1007/s12647-023-00678-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12647-023-00678-2

Keywords

Navigation