Skip to main content

Advertisement

Log in

Effect of Air Pollutants on the Carbon Sequestration Rate and Other Physiological Processes in Different Vegetation Types: A Review

  • Review Paper
  • Published:
MAPAN Aims and scope Submit manuscript

Abstract

Globally, with rapid urbanization, industrialization, and excessive use of transportation, various types of air pollutants released into the environment; are responsible for deteriorating air quality and becoming a significant environmental health hazard for humans and the environment. It is widely recognized that vegetation has the potential to improve air quality by trapping air pollutants on leaves, mitigating urban heat island activity, and sequestering CO2. Trees play a significant role in sinking CO2 through photosynthesis and storing carbon (C) as biomass. The rapid increase in air pollutants in the earth's atmosphere makes it necessary to investigate their impacts on various vegetation types using a holistic approach. This study aims to review existing literature on various air pollutants on different vegetation types and identify gaps in research to strengthen the direction for future research. In addition, this study discusses air pollution scenarios, different vegetation types, and their impact on C sequestration rates. This literature review will be of great assistance to researchers and policymakers who seek to understand the consequences of air pollutants on the rate of C sequestration and to perform further research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. S.M. Zaid, E. Perisamy, H. Hussein, N.E. Myeda and N. Zainon, Vertical Greenery System in urban tropical climate and its carbon sequestration potential: A review. Ecol. Indic., 91 (2018) 57–70.

    Article  Google Scholar 

  2. W.B. Meyer and B.L. Turner, Human population growth and global land-use/cover change. Annu. Rev. Ecol. Syst., 23(1) (1992) 39–61.

    Article  Google Scholar 

  3. A. Anamika and C. Pradeep, Urban vegetation and air pollution mitigation: Some issues from India. CJUES., 4(01) (2016) 1650001.

    Google Scholar 

  4. F. Kong, H. Yin and N. Nakagoshi, Using GIS and landscape metrics in the hedonic price modeling of the amenity value of urban green space: A case study in Jinan City. China. Landsc Urban Plan., 79(3–4) (2007) 240–252.

    Article  Google Scholar 

  5. G. Balakrishna, S. Pervez, S. Dewangan, J. Matawale, N. Dubey and G. Balakrishna, Air pollution, sources and effects on health and vegetation in developing countries-a review. Int. J. Energy Environ. Eng., 1 (2015) 1–7.

    Google Scholar 

  6. S. Sonwani, S. Hussain and P. Saxena, Air pollution and climate change impact on forest ecosystems in Asian region–a review. Ecosyst Health Sust., 8(1) (2022) 2090448.

    Article  Google Scholar 

  7. R. Rai, M. Rajput, M. Agrawal and S.B. Agrawal, Gaseous air pollutants: a review on current and future trends of emissions and impact on agriculture. J. Sci. Res., 55(771) (2011) 1.

    Google Scholar 

  8. R. Nithya, S. Poonguzhali and S. Kanagarasu, Use of Tree Species in Controlling Environmental Pollution-A Review. Int. J. Curr. Microbiol. App. Sci., 6(4) (2017) 893–899.

    Article  Google Scholar 

  9. S. Banerjee, A. Banerjee, D. Palit and P. Roy, Assessment of vegetation under air pollution stress in urban industrial area for greenbelt development. Int. J. Environ. Sci. Technol., 16(10) (2019) 5857–5870.

    Article  Google Scholar 

  10. F. Crespin, Overview of border health issues. Border Health J., 10(2) (1994) 25–29.

    MathSciNet  Google Scholar 

  11. D.J. Nowak and D.E. Crane, Carbon storage and sequestration by urban trees in the USA. Environ. Pollut., 116 (2002) 381–389.

    Article  Google Scholar 

  12. D. Deshmukh, M.K. Deb and S.K. Verma, Distribution patterns of coarse, fine and ultrafine atmospheric aerosol particulate matters in major cities of Chhattisgarh. Indian J. Environ. Prot., 30 (2010) 184–197.

    Google Scholar 

  13. S.S. Ram, S. Majumder, P. Chaudhuri, S. Chanda, S.C. Santra, A. Chakraborty and M. Sudarshan, A review on air pollution monitoring and management using plants with special reference to foliar dust adsorption and physiological stress responses. Crit Rev Environ Sci Technol., 45(23) (2015) 2489–2522.

    Article  Google Scholar 

  14. M. Birley and K. Lock, The Health Impacts of Periurban Natural Resource Development Liverpool, UK. LSTM. (1999).

  15. J. Kurokawa and T. Ohara, Long-term historical trends in air pollutant emissions in Asia: Regional Emission inventory in ASia (REAS) version 3.ACP. 20(21) (2020)12761–12793.

  16. J. Lean and D.A. Warrilow, Simulation of the regional climatic impact of Amazon deforestation. Nature., 342(6248) (1989) 411–413.

    Article  ADS  Google Scholar 

  17. P.K. Joshi, P.S. Roy, S. Singh, S. Agrawal and D. Yadav, Vegetation cover mapping in India using multi-temporal IRS Wide Field Sensor (WiFS) data. Remote Sens. Environ., 103(2) (2006) 190–202.

    Article  ADS  Google Scholar 

  18. C.S. Reddy, C.S. Jha, P.G. Diwakar and V.K. Dadhwal, Nationwide classification of forest types of India using remote sensing and GIS. Environ. Monit. Assess., 187(12) (2015) 1–30.

    Article  Google Scholar 

  19. N.H. Ravindranath, B.S. Somashekhar and M. Gadgil, Carbon flow in Indian forests. Clim. Change., 35(3) (1997) 297–320.

    Article  Google Scholar 

  20. O. Salunkhe, P.K. Khare, R. Kumari and M.L. Khan, A systematic review on the aboveground biomass and carbon stocks of Indian forest ecosystems. Ecol. Process., 7(1) (2018) 1–12.

    Article  Google Scholar 

  21. L. R. Pereira Júnior, E. M. D. Andrade, H. A. D. Q. Palácio, P. C. L. Raymer, J. C. Ribeiro Filho and F. J. S. Pereira, Carbon stocks in a tropical dry forest in Brazil. Rev. Ciênc. Agron. 47(1) (2016) 32–40.

  22. B.A. Currie and B. Bass, Estimates of air pollution mitigation with green plants and green roofs using the UFORE model. Urban Ecosyst., 11(4) (2008) 409–422.

    Article  Google Scholar 

  23. D.J. Nowak, D.E. Crane and J.C. Stevens, Air pollution removal by urban trees and shrubs in the United States. Urban For Urban Green., 4(3–4) (2006) 115–123.

    Article  Google Scholar 

  24. D.Y. Leung, J.K. Tsui, F. Chen, W.K. Yip, L.L. Vrijmoed and C.H. Liu, Effects of urban vegetation on urban air quality. Landsc. Res., 36(2) (2011) 173–188.

    Article  Google Scholar 

  25. A.H. Rosenfeld, H. Akbari, S. Bretz, B.L. Fishman, D.M. Kurn and D. Sailor, Mitigation of urban heat islands: materials, utility programs, updates. Energy Build., 22 (1995) 255–265.

    Article  Google Scholar 

  26. H. Akbari, Shade trees reduce building energy use and CO2 emissions from power plants. Environ. Pollut., 116 (2002) 119–126.

    Article  Google Scholar 

  27. D. Fowler, J.N. Cape and M.H. Unsworth, Deposition of atmospheric pollutants on forest. Philos. T. Roy. Soc. B., 324 (1989) 247–265.

    Google Scholar 

  28. D. J. Nowak and J. F. Dwyer, Understanding the benefits and costs of urban forest ecosystems. In Urban and Community Forestry in the Northeast, Berlin: Springer. (2007) 25–46.

  29. Snehlata, A. Rajlaxmi and M. Kumar, Urban tree carbon density and CO2 equivalent of National Zoological Park, Delhi. Environ. Monit. Assess. 193(12) (2021) 1–13.

  30. C. Sahu and S.K. Sahu, Air pollution tolerance index (APTI), anticipated performance index (API), carbon sequestration and dust collection potential of Indian tree species–A review. Int. J. Emerg. Res. Manag. Technol., 4(11) (2015) 37–40.

    Google Scholar 

  31. C. Brack, Pollution Mitigation and Carbon Sequestration by an Urban Forest. Environ. Pollut., 116(1) (2002) 195–200.

    Article  Google Scholar 

  32. M. Lorenz, N. Clarke, E. Paoletti, A. Bytnerowicz, N. Grulke, N. Lukina, H. Sase and J. Staelens, Air pollution impacts on forests in a changing climate, In Forests and society: responding to global drivers of change. International Union of Forest Research Organizations (IUFRO), 25 (2010) 55–75.

    Google Scholar 

  33. A.J. Zeevart, Some effects of fumigating plants for short periods with NO2. Environ. Pollut., 11(2) (1976) 97–108.

    Article  Google Scholar 

  34. R. Matyssek, G. Wieser, C. Calfapietra, W. De Vries, P. Dizengremel, D. Ernst, Y. Jolivet, T.N. Mikkelsen, G.M.J. Mohren, D. Le Thiec and J.P. Tuovinen, Forests under climate change and air pollution: gaps in understanding and future directions for research. Environ. Pollut., 160 (2012) 57–65.

    Article  Google Scholar 

  35. M. Borah, D. Das, J. Kalita, H.P.D. Boruah, B. Phukan and B. Neog, Tree species composition, biomass and carbon stocks in two tropical forest of Assam. Biomass Bioenerg., 78 (2015) 25–35.

    Article  Google Scholar 

  36. D. Karmakar, T. Ghosh and P.K. Padhy, Effects of air pollution on carbon sequestration potential in two tropical forests of West Bengal, India. Ecol. Indic., 98 (2019) 377–388.

    Article  Google Scholar 

  37. S. Mouna, S.M. Ningaraj and K. Kotresha, Estimation of tree biomass and carbon sequestration in Karnataka college campus, dharwad. Karnataka. J. Biosci., 10(11) (2021) 9092–9108.

    Google Scholar 

  38. P.A. Beedlow, D.T. Tingey, D.L. Phillips, W.E. Hogsett and D.M. Olszyk, Rising atmospheric CO2 and carbon sequestration in forests. Front. Ecol. Environ., 2(6) (2004) 315–322.

    Google Scholar 

  39. P.O. Agbaire, Air pollution tolerance indices (APTI) of some plants around Erhoike-Kokori oil exploration site of Delta State. Nigeria. Int. J. Physical Sci., 4(6) (2009) 366–368.

    Google Scholar 

  40. A.F. Amir, F.S. Yeok, A. Abdullah and A.M. Rahman, The most effective Malaysian Legume plants as bio facade for building wall application. J. Sustain. Dev., 4(1) (2011) 103.

    Article  Google Scholar 

  41. L. Gratani, L. Varone and A. Bonito, Carbon sequestration of four urban parks in Rome. Urban For Urban Green., 19 (2016) 184–193.

    Article  Google Scholar 

  42. CPCB CB (https://cpcb.nic.in) (Accessed on 29th November 2022)

  43. L. Ma, C. Shen, D. Lou, S. Fu and D. Guan, Patterns of ecosystem carbon density in edge-affected fengshui forests. Ecol. Eng., 107 (2017) 216–223.

    Article  Google Scholar 

  44. V. Patil, A. Singh, N. Naik and S. Unnikrishnan, Estimation of mangrove carbon stocks by applying remote sensing and GIS techniques. Wetlands., 35(4) (2015) 695–707.

    Article  Google Scholar 

  45. A.K. Sabat, Analysis of the underlying causes of environmental degradation in Bhubaneswar city. Int. J. Eng. Res. Appl., 2(2) (2012) 210–214.

    Google Scholar 

  46. S. A. Dash, A. Pradhan and N. Behera, Estimation of above-ground biomass and carbon stock of tree species in public parks of Bhubaneswar, Odisha. Arboric. J. (2022) 1–12.

  47. M. Shahid and L.K. Rai, Opportunities for Reaping the Benefits of REDD+ in Sikkim Himalaya for Conservation and Enhancement of Carbon Stock. Indian J. For., 40(3) (2017) 209–215.

    Google Scholar 

  48. R. Baishya, S.K. Barik and K. Upadhaya, Distribution pattern of aboveground biomass in natural and plantation forests of humid tropics in northeast India. Trop. Ecol., 50(2) (2009) 295.

    Google Scholar 

  49. L.A. Pragasan and A. Karthick, Carbon stock sequestered by tree plantations in university campus at Coimbatore. India. Int. J. Environ. Sci., 3(5) (2013) 1700–1710.

    Google Scholar 

  50. R. Mohanraj and P.A. Azeez, Urban development and particulate air pollution in Coimbatore city. India. Int. J. Environ. Stud., 62(1) (2005) 69–78.

    Article  Google Scholar 

  51. A. Khamari, A. Mansingh and A. Pradhan, Assessment of biodiversity and biomass carbon stock from an urban forest: A case study of Sambalpur university campus forest. Int. J. Environ. Sci. Technol., 3(1) (2021) 423–429.

    Google Scholar 

  52. C. Sahu and S.K. Sahu, Ambient air quality and air pollution index of Sambalpur: a major town in Eastern India. Int. J. Environ. Sci. Technol., 16 (2019) 8217–8228.

    Article  Google Scholar 

  53. K. Subashree and S. Sundarapandian, Biomass and carbon stock assessment in two savannahs of Western Ghats, India. Taiwania. 62(3) (2017).

  54. C.J. Raj and J.P. Kumari, Urban and Rural Airborne Particulate Matter: Seasonal Variation of Alpha Activity in Kanyakumari District. Nat. Environ. Pollut. Technol., 20(3) (2021) 1225–1229.

    Google Scholar 

  55. S.E.W.A. Singh, Carbon sequestration potential of red sander (Pterocarpus santalinus) plantations under different ages in Vellore and Thiruvallur districts of Tamil Nadu. Life Sci. Leaflets, 123 (2020) 1–10.

    Google Scholar 

  56. B.K. Jana, S. Biswas, M. Majumder, P.K. Roy and A. Mazumdar, Carbon sequestration rate and aboveground biomass carbon potential of four young species. J. Ecol. Nat. Environ., 1(2) (2009) 15–24.

    Google Scholar 

  57. S.C. Sahu, H.S. Suresh and N.H. Ravindranath, Forest structure, composition and above ground biomass of tree community in tropical dry forests of Eastern Ghats. India. Not. Sci. Biol., 8(1) (2016) 125–133.

    Article  Google Scholar 

  58. S. Shah, D.P. Sharma, P. Tripathi and N.A. Pala, Carbon partitioning in subtropical Pinus roxburghii forest, Solan. India. Journal of Tropical Forest Science, 26(3) (2014) 355–361.

    Google Scholar 

  59. R.R. Gogoi, D. Adhikari, K. Upadhaya and S.K. Barik, Tree diversity and carbon stock in a subtropical broadleaved forest are greater than a subtropical pine forest occurring in similar elevation of Meghalaya, north-eastern India. Trop. Ecol., 61(1) (2020) 142–149.

    Article  Google Scholar 

  60. A.C. Waikhom, A.J. Nath and P.S. Yadava, Aboveground biomass and carbon stock in the largest sacred grove of Manipur, Northeast India. J. For. Res., 29 (2018) 425–428.

    Article  Google Scholar 

  61. D. Tolangay, Assessment of carbon stock and sequestration potential in sub-tropical forests of Darjeeling, eastern Himalaya. Proc Int Acad Ecol Environ Sc., 12(4) (2022) 352.

    Google Scholar 

  62. C. Sarkar, A. Chatterjee, D. Majumdar, A. Roy, A. Srivastava, S.K. Ghosh and S. Raha, How the atmosphere over eastern Himalaya, India is polluted with carbonyl compounds? Temporal variability and identification of sources. Aerosol Air Qual Res., 17(9) (2017) 2206–2223.

    Article  Google Scholar 

  63. A. Ao, S. Changkija, F.Q. Brearley and S.K. Tripathi, Plant Community Composition and Carbon Stocks of a Community Reserve Forest in North Aerosol Air Qual Res -East India. Forests., 14(2) (2023) 245.

    Article  Google Scholar 

  64. N.B. Devi, N.T. Lepcha, S.S. Mahalik, D. Dutta and B.L. Tsanglao, Urban sacred grove forests are potential carbon stores: A case study from Sikkim Himalaya. Environmental Challenges., 4 (2021) 100072.

    Article  Google Scholar 

  65. B. S. Jina, P. Sah, M. D. Bhatt and Y. S. Rawat, Estimating carbon sequestration rates and total carbon stockpile in degraded and non-degraded sites of Oak and Pine forest of Kumaun Central Himalaya. Ecoprint: Int. J. Ecol. 15 (2008) 75–81.

  66. V. C. Joshi, V. S. Negi, D. Bisht, R. C. Sundriyal and D. Arya, Tree biomass and carbon stock assessment of subtropical and temperate forests in the Central Himalaya. India. Trees, Forests and People. 6 (2021) 100147.

  67. M. Kumar, A. Kumar, R. Kumar, B. Konsam, N.A. Pala and J.A. Bhat, Carbon stock potential in Pinus roxburghii forests of Indian Himalayan regions. Environ. Dev. Sustain., 23 (2021) 12463–12478.

    Article  Google Scholar 

  68. N. Giri, L. Rawat and P. Kumar, Assessment of biomass carbon stock in a Tectona grandis Linn. f. plantation ecosystem of Uttarakhand, India. IJEST. 3(5) (2014) 46–53.

  69. N. Gera, M. Gera and N.S. Bisht, Carbon sequestration potential of selected plantation interventions in Terai region of Uttarakhand. Indian For., 137(3) (2011) 273.

    Google Scholar 

  70. H. Pant and A. Tewari, Carbon sequestration in Chir-Pine (Pinus roxburghii Sarg.) forests under various disturbance levels in Kumaun Central Himalaya. J. For. Res. 25 (2014) 401–405.

  71. S. Aziz, F.M. Chughtal, H. Shaheen, R.W.A. Khan and M.E.U.I. Dar, Biomass and soil carbon stocks assessment in western Himalayan alpine and subalpine vegetation zones of Kashmir. Pak. J. Bot., 51(3) (2019) 973–978.

    Article  Google Scholar 

  72. N.M. Darrall, The effect of air pollutants on physiological processes in plants. Plant Cell Environ., 12(1) (1989) 1–30.

    Article  Google Scholar 

  73. H.K. Lee, I. Khaine, M.J. Kwak, J.H. Jang, T.Y. Lee, J.K. Lee, I.R. Kim, W.I. Kim, K.S. Oh and S.Y. Woo, The relationship between SO2 exposure and plant physiology: A mini review. Hortic Environ Biotechnol., 58(6) (2017) 523–529.

    Article  Google Scholar 

  74. I. Ziegler, The effect of SO3-on the activity of ribulose-1, 5-diphosphate carboxylase in isolated spinach chloroplasts. Planta., 103(2) (1972) 155–163.

    Article  Google Scholar 

  75. I.F. Gheorghe and B. Ion, The effects of air pollutants on vegetation and the role of vegetation in reducing atmospheric pollution. The impact of air pollution on health, economy, environment and agricultural sources., 29 (2011) 241–280.

    Google Scholar 

  76. K. Raschke, Stomatal action. Annu Rev Plant Physiol., 26 (1975) 309–340.

    Article  Google Scholar 

  77. A. Verma and S.N. Singh, Biochemical and ultrastructural changes in plant foliage exposed to auto-pollution. Environ. Monit. Assess., 120(1) (2006) 585–602.

    Article  Google Scholar 

  78. M. F. Robinson, J. Heath and T. A. Mansfield, Disturbances in stomatal behaviour caused by air pollutants. J. Exp. Bot. (1998) 461–469.

  79. M. Treshow, Air Pollution and Plant Life. Wiley & Sons, New York (1984).

    Google Scholar 

  80. J. Aminifar and M. Ramroudi, Ecophysiological aspects of environmental pollutions on growth of plants. Appl Sci Rep., 8 (2014) 99–102.

    Google Scholar 

  81. M.R. Khan and M.W. Khan, The interaction of SO2 and root-knot nematode on tomato. Environ. Pollut., 81(2) (1993) 91–102.

    Article  MathSciNet  Google Scholar 

  82. K. Liu, S. Xu, W. Xuan, T. Ling, Z. Cao, B. Huang, Y. Sun, L. Fang, Z. Liu, N. Zhao and W. Shen, Carbon monoxide counteracts the inhibition of seed germination and alleviates oxidative damage caused by salt stress in Oryza sativa. Plant Sci., 172(3) (2007) 544–555.

    Article  Google Scholar 

  83. M. Wang and W. Liao, Carbon monoxide as a signaling molecule in plants. Front. Plant Sci., 7 (2016) 572.

    Google Scholar 

  84. S.K. Shukla, A.S. Nagpure, V. Kumar, S. Baby, P. Shrivastava, D. Singh and R.N. Shukla, Impact of dust emission on plant vegetation in the vicinity of cement plant. Environ Eng Manag J., 7(1) (2008) 31–35.

    Article  Google Scholar 

  85. M.H. Bender, J.M. Baskin and C.C. Baskin, Flowering requirement of Polymnia canadensis (Asteraceae) and their influence on its life history variation. Plant Ecol., 160 (2002) 113–124.

    Article  Google Scholar 

  86. P.K. Rai, Impacts of particulate matter pollution on plants: Implications for environmental biomonitoring. Ecotoxicol. Environ. Saf., 129 (2016) 120–136.

    Article  Google Scholar 

  87. B.L. Richards, J.T. Middleton and W.B. Hewitt, Air pollution with relation to agronomic crops: V. Oxidant stipple of grape. Agron J., 50(9) (1958) 559–561.

    Google Scholar 

  88. A. C. Hill and N. Littlefield, Ozone. Effect on apparent photosynthesis, rate of transpiration, and stomatal closure in plants. Environ. Sci. Technol. 3(1) (1969) 52–56.

  89. C.P. Andersen, Source–sink balance and carbon allocation below ground in plants exposed to ozone. New Phytol., 157(2) (2003) 213–228.

    Article  Google Scholar 

  90. S. Tiwari and M. Agrawal, Effect of ozone on physiological and biochemical processes of plants. In Tropospheric Ozone and its Impacts on Crop Plants. Springer, Cham. (2018) 65–113.

  91. D.T. Tingey, J.A. Laurence and J.A. Weber, Elevated CO2 and temperature alter the response of Pinus ponderosa to ozone: a simulation analysis. Ecol Appl., 11 (2001) 1412–1424.

    Google Scholar 

  92. D.F. Karnosky, D.R. Zak and K.S. Pregitzer, Tropospheric O3 moderates responses of temperate hardwood forests to elevated CO2: a synthesis of molecular to ecosystem results from the Aspen FACE project. Funct Ecol., 17 (2003) 289–304.

    Article  Google Scholar 

  93. K.E. Percy, C.S. Awmack and R.L. Lindroth, Altered performance of forest pests under atmospheres enriched by CO2 and O3. Nature., 420 (2002) 403–407.

    Article  ADS  Google Scholar 

  94. A. Woźny, B. Zatorska and F. Młodzianowski, Influence of lead on the development of lupin seedlings and ultrastructural localization of this metal in the roots. Acta Soc. Bot. Pol., 51(3–4) (1982) 345–351.

    Google Scholar 

  95. M. Wierzbicka and J. Obidzińska, The effect of lead on seed imbibition and germination in different plant species. Plant Sci., 137(2) (1998) 155–171.

    Article  Google Scholar 

  96. L.J. Van der Eerden, Toxicity of ammonia to plants. Agric. Environm., 7(3–4) (1982) 223–235.

    Article  Google Scholar 

  97. D.T. Hill, V.W. Payne, J.W. Rogers and S.R. Kown, Ammonia effects on the biomass production of five constructed wetland plant species. Bioresour. Technol., 62(3) (1997) 109–113.

    Article  Google Scholar 

  98. V. Campos, S.S. Lessa, R.L. Ramos, M.C. Shinzato and T.A. Medeiros, Disturbance response indicators of Impatiens walleriana exposed to benzene and chromium. Int. J. Phytoremediation., 19(8) (2017) 709–717.

    Article  Google Scholar 

  99. L. Reynoso-Cuevas, M.E. Gallegos-Martínez, F. Cruz-Sosa and M. Gutiérrez-Rojas, In vitro evaluation of germination and growth of five plant species on medium supplemented with hydrocarbons associated with contaminated soils. Bioresour. Technol., 99(14) (2008) 6379–6385.

    Article  Google Scholar 

  100. A.G. Fedorenko, N. Chernikova, T. Minkina, S. Sushkova, T. Dudnikova, E. Antonenko, G. Fedorenko, T. Bauer, S. Mandzhieva and A. Barbashev, Effects of benzo [a] pyrene toxicity on morphology and ultrastructure of Hordeum sativum. Environ Geochem Health., 43(4) (2021) 1551–1562.

    Article  Google Scholar 

  101. J.R. Rofkar, D.F. Dwyer and D.M. Bobak, Uptake and toxicity of arsenic, copper, and silicon in Azolla caroliniana and Lemna minor. Int. J. Phytoremediation., 16(2) (2014) 155–166.

    Article  Google Scholar 

  102. N. S. Mokgalaka-Matlala, E. Flores-Tavizon, H. Castillo-Michel, J. R. Peralta-Videa and J. L. Gardea-Torresdey, Toxicity of arsenic (III) and (V) on plant growth, element uptake, and total amylolytic activity of mesquite (Prosopis juliflora x P. velutina). Int. J. Phytoremediation. 10(1) (2008) 47–60.

  103. M. A. Rahman, H. Hasegawa, M. M. Rahman, M. N. Islam, M. M. Miah and A. Tasmen, Effect of arsenic on photosynthesis, growth and yield of five widely cultivated rice (Oryza sativa L.) varieties in Bangladesh. Chemosphere. 67(6) (2007) 1072–1079.

  104. A. Asati, M. Pichhode and K. Nikhil, Effect of heavy metals on plants: an overview. Int. J. Innov. Manag., 5(3) (2016) 56–66.

    Google Scholar 

  105. A.C. Barrachina, F.B. Carbonell and J.M. Beneyto, Arsenic uptake, distribution, and accumulation in tomato plants: effect of arsenite on plant growth and yield. J. Plant Nutr., 18(6) (1995) 1237–1250.

    Article  Google Scholar 

  106. M.S. Cox, P.F. Bell and J.L. Kovar, Differential tolerance of canola to arsenic when grown hydroponically or in soil. J. Plant Nutr., 19(12) (1996) 1599–1610.

    Article  Google Scholar 

  107. A.R. Marin, S.R. Pezeshki, P.H. Masscheleyn and H.S. Choi, Effect of dimethylarsinic acid (DMAA) on growth, tissue arsenic and photosynthesis of rice plants. J. Plant Nutr., 16(5) (1993) 865–880.

    Article  Google Scholar 

  108. M. J. Abedin, J. Cotter-Howells and A. A. Meharg, Arsenic uptake and accumulation in rice (Oryza sativa L.) Irrigated with contaminated water. Plant Soil. 240(2) (2002) 311–319.

  109. (WHO, 1991) World Health Organization, Nickel: environmental health criteria, 108. World Health Organization, Geneva (1991).

  110. T.V. Sreekanth, P.C. Nagajyothi, K.D. Lee and T.N. Prasad, Occurrence, physiological responses and toxicity of nickel in plants. Int. J. Environ. Sci. Technol., 10(5) (2013) 1129–1140.

    Article  Google Scholar 

  111. P.C. Dekock, Heavy metal toxicity and iron chlorosis. Ann. Bot., 20 (1956) 133–141.

    Article  Google Scholar 

  112. I. S. Sheoran, H.R. Singal and R. Singh, Effect of cadmium and nickel on photosynthesis and the enzymes of the photosynthetic carbon reduction cycle in pigeon pea (Cajanus cajan L.) Photosynth. Res. 23(3) (1990) 345–351.

  113. B.Y. Khalid and J. Tinsley, Some effects of nickel toxicity on ryegrass. Plant Soil., 55 (1980) 139–144.

    Article  Google Scholar 

  114. Y.C. Lin and C.H. Kao, Nickel toxicity of rice seedlings: Cell wall peroxidase, lignin, and NiSO4- inhibited root growth. Crop, Environment Bioinformatics., 2 (2005) 131–136.

    Google Scholar 

  115. T. Oku and G. Tomita, Photoactivation of the latent O2_evolving center in chloroplasts isolated from dark grown spruce seedlings. Physiol Plant, 48 (1980) 99–103.

    Article  Google Scholar 

  116. M.M. Savard, C. Bégin and M. Parent, Are industrial SO2 emissions reducing CO2 uptake by the boreal forest? Geology., 30(5) (2002) 403–406.

    Article  ADS  Google Scholar 

  117. V.J. Black and M.H. Unsworth, Stomatal responses to sulphur dioxide and vapour pressure deficit. J. Exp. Bot., 31(2) (1980) 667–677.

    Article  Google Scholar 

  118. K.I. Shimazaki, S.W. Yu, T. Sakaki and K. Tanaka, Differences between spinach and kidney bean plants in terms of sensitivity to fumigation with NO2. Plant Cell Physiol., 33(3) (1992) 267–252.

    Article  Google Scholar 

  119. H. Saxe, Stomatal-dependent and stomatal-independent uptake of NOx. New Phytol, 103(1) (1986) 199–205.

    Article  Google Scholar 

  120. U. Kafiat, R. Maggs, S. R. A. Shamsi, M. R. Ashmore and L. van der Erden, Final report European Comission Research Project No. CII-CT90-0865, Brussels. University of Punjab and Imperial College, London, (1994).

  121. D.A. Jaffe and N.L. Wigder, Ozone production from wildfires: A critical review. Atmos. Environ, 51 (2012) 1–10.

    Article  ADS  Google Scholar 

  122. L.D. Emberson, M.R. Ashmore, F. Murray, J.C. Kuylenstierna, K.E. Percy, T. Izuta, Y. Zheng, H. Shimizu, B.H. Sheu, C.P. Liu and M. Agrawal, Impacts of air pollutants on vegetation in developing countries. Water Air Soil Pollut, 130(1) (2001) 107–118.

    Article  ADS  Google Scholar 

  123. T. Hirano, M. Kiyota and I. Aiga, Physical effects of dust on leaf physiology of cucumber and kidney bean plants. Environ. Pollut., 89(3) (1995) 255–261.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Director of CSIR-NPL for providing the infrastructure and support for this study. A. Rani (SRF) and A. Rajlaxmi (INSPIRE-SRF) would like to acknowledge the University Grant Commission (UGC), Govt. of India and Department of Science and Technology (DST), Govt. of India, respectively, for providing research grants. The authors also acknowledge CPCB for providing air quality data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoj Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rani, A., Rajlaxmi, A. & Kumar, M. Effect of Air Pollutants on the Carbon Sequestration Rate and Other Physiological Processes in Different Vegetation Types: A Review. MAPAN 38, 1053–1065 (2023). https://doi.org/10.1007/s12647-023-00643-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12647-023-00643-z

Keywords

Navigation