Skip to main content
Log in

Dead Time Estimation of the Transient Digitizer of the Raman Lidar System Installed at a High-Altitude Station Palampur in India

  • Original Paper
  • Published:
MAPAN Aims and scope Submit manuscript

Abstract

The photon counts (PC) signal of the lidar backscattered signal is affected by the dead time of the transient digitizer. The dead time relies on the photomultiplier (PMT) characteristics and high voltage settings which results in variation of the dead time over time. In this paper, the dead time of the Raman lidar system installed at remote atmospheric monitoring station of CSIR-National Physical Laboratory in Palampur, Himachal Pradesh, India, is estimated and reported. Two different methods proposed by Whiteman et al. and Newsom et al. are used to derive the dead time of the lidar system from June 2016 to June 2019 and the results of both the methods are statistically compared. The results show that the dead time values were found to be increasing from 4 ns to 5.8 ns over the study period. For comparison, one sample t-test and Bland–Altman analysis were used along with the correlation and regression analysis and the results suggest that both the methods were found to be in agreement and there was no statistically significant difference between both the methods. The dead time corrected data was used to obtain glued signal and from that aerosol optical properties have been derived. The optical properties derived from glued signal, dead time corrected and uncorrected signal have been compared and we observed significant difference at the lower altitudes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R.T.H. Collis and P.B. Russell, Lidar measurement of particles and gases by elastic backscattering and differential absorption. In: E. D. Hinkley (eds) Laser Monitoring of the Atmosphere, Topics in Applied Physics, vol 14. Berlin, Heidelberg: Springer. https://doi.org/10.1007/3-540-07743-X_18.

  2. A. Comerón, C. Muñoz-Porcar, F. Rocadenbosch, A. Rodríguez-Gómez and M. Sicard, Current research in lidar technology used for the remote sensing of atmospheric aerosols. Sensors, 17 (2017) 1450. https://doi.org/10.3390/s17061450.

    Article  ADS  Google Scholar 

  3. B. Mielke, “ANALOG + PHOTON COUNTING” Licel GmbH Manual, n.d, Available: http://licel.com/manuals/analogpc.pdf.

  4. Hamamatsu Photonics, “Photomultiplier tubes basics and applications third edition”, 2006, [Online]. Available: https://www.hamamatsu.com/resources/pdf/etd/PMT_handbook_v3aE.pdf.

  5. Photonics, “Photomultiplier tubes principles & applications”, 2002, [Online]. Available: http://www2.pv.infn.it/~debari/doc/Flyckt_Marmonier.pdf.

  6. Y. Zhang, F. Yi, W. Kong and Y. Yi, Slope characterization in combining analog and photon count data from atmospheric lidar measurements. Appl. Opt., 53 (2014) 7312. https://doi.org/10.1364/AO.53.007312.

    Article  ADS  Google Scholar 

  7. Licel GmbH, “Licel Ethernet Controller – Installation and Reference Manual”, Berlin, Germany, 2014, Available: http://www.licel.com/transient_overview.html.

  8. Licel GmbH, “Licel Ethernet Controller – Installation and Reference Manual”, Berlin, Germany, 2007.

  9. R.K. Newsom, D.D. Turner, B. Mielke, M. Clayton, R. Ferrare and C. Sivaraman, Simultaneous analog and photon counting detection for Raman lidar. Appl. Opt., 48 (2009) 3903–3914.

    Article  ADS  Google Scholar 

  10. D.N. Whiteman, B. Demoz, G. Schwemmer, B. Gentry, P.D. Girolamo, D. Sabatino, J. Comer, I. Veselovskii, K. Evans, R.F. Lin, Z. Wang, A. Behrendt, V. Wulfmeyer, E. Browell, R. Ferrare, S. Ismail and J. Wang, Raman lidar measurements during the international H2O project. Part II: case studies. J. Atmospheric Ocean. Technol., 23 (2006) 170–183. https://doi.org/10.1175/JTECH1839.1.

    Article  ADS  Google Scholar 

  11. Zhishen Liu, Zhigang Li, Bingyi Liu and Rongzhong Li, Analysis of saturation signal correction of the troposphere lidar. Chin. Opt. Lett., 7 (2009) 1051–1054. https://doi.org/10.3788/COL20090711.1051.

    Article  ADS  Google Scholar 

  12. Jaswant, S.R. Radhakrishnan, S.K. Singh, C. Sharma, and D. K. Shukla, Initial assessment of lidar signal and the first result of a Raman lidar installed at a high altitude station in India. Remote Sens. Appl. Soc. Environ., 18 (2020) 100309. https://doi.org/10.1016/j.rsase.2020.100309.

  13. E.J. Darland, G.E. Leroi and C.G. Enke, Pulse (photon) counting: determination of optimum measurement system parameters. Anal. Chem., 51 (1979) 240–245. https://doi.org/10.1021/ac50038a021.

    Article  Google Scholar 

  14. D.P. Donovan, J.A. Whiteway and A.I. Carswell, Correction for nonlinear photon-counting effects in lidar systems. Appl. Opt., 32 (1993) 6742. https://doi.org/10.1364/AO.32.006742.

    Article  ADS  Google Scholar 

  15. D.N. Whiteman, S.H. Melfi and R.A. Ferrare, Raman lidar system for the measurement of water vapor and aerosols in the Earth’s atmosphere. Appl. Opt., 31 (1992) 3068. https://doi.org/10.1364/AO.31.003068.

    Article  ADS  Google Scholar 

  16. D.N. Whiteman, B. Demoz, K. Rush, G. Schwemmer, B. Gentry, P.D. Girolamo, J. Comer, I. Veselovskii, K. Evans, S.H. Melfi, Z. Wang, M. Cadirola, B. Mielke, D. Venable and T.V. Hove, Raman lidar measurements during the international H2O project. Part I: Instrumentation and analysis techniques. J. Atmospheric Ocean. Technol., 23 (2006) 157–169. https://doi.org/10.1175/JTECH1838.1.

    Article  ADS  Google Scholar 

  17. D.D. Turner and J.E.M. Goldsmith, Twenty-four-hour raman lidar water vapor measurements during the atmospheric radiation measurement program’s 1996 and 1997 water vapor intensive observation periods. J. Atmospheric Ocean. Technol., 16 (1999) 1062–1076. https://doi.org/10.1175/1520-0426(1999)016%3c1062:TFHRLW%3e2.0.CO;2.

    Article  ADS  Google Scholar 

  18. H.M.J. Barbosa, B. Barja, T. Pauliquevis, D.A. Gouveia, P. Artaxo, G.G. Cirino, R.M.N. Santos and A.B. Oliveira, A permanent Raman lidar station in the Amazon: description, characterization, and first results. Atmospheric Meas. Tech., 7 (2014) 1745–1762. https://doi.org/10.5194/amt-7-1745-2014.

    Article  ADS  Google Scholar 

  19. A. Kalra, Decoding the Bland-Altman plot: Basic review. J. Pract. Cardiovasc. Sci., 3 (2017) 36. https://doi.org/10.4103/jpcs.jpcs_11_17.

    Article  Google Scholar 

  20. F.J.S. Lopes, E. Landulfo and M.A. Vaughan, Evaluating CALIPSO’s 532 nm lidar ratio selection algorithm using AERONET sun photometers in Brazil. Atmospheric Meas. Tech., 6 (2013) 3281–3299. https://doi.org/10.5194/amt-6-3281-2013.

    Article  ADS  Google Scholar 

  21. A.H. Omar, D.M. Winker, M.A. Vaughan, Y. Hu, C.R. Trepte, R.A. Ferrare, K.-P. Lee, C.A. Hostetler, C. Kittaka, R.R. Rogers, R.E. Kuehn and Z. Liu, The CALIPSO automated aerosol classification and lidar ratio selection algorithm. J. Atmospheric Ocean. Technol., 26 (2009) 1994–2014. https://doi.org/10.1175/2009JTECHA1231.1.

    Article  ADS  Google Scholar 

  22. W. Wang, W. Gong, F. Mao, Z. Pan and B. Liu, Measurement and study of lidar ratio by using a Raman lidar in central China. Int. J. Environ. Res. Public. Health, 13 (2016) 508. https://doi.org/10.3390/ijerph13050508.

    Article  Google Scholar 

  23. A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp and W. Michaelis, Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar. Appl. Opt., 31 (1992) 7113. https://doi.org/10.1364/AO.31.007113.

    Article  ADS  Google Scholar 

  24. M.T. Osborn, M.C. Pitts, K.A. Powell and M.P. McCormick, SAM II aerosol measurements during the 1989 AASE. Geophys. Res. Lett., 17 (1990) 397–400. https://doi.org/10.1029/GL017i004p00397.

    Article  ADS  Google Scholar 

  25. S.R. Radhakrishnan, B.C. Arya, C. Sharma, A. Kumar, S.K. Mishra and D.K. Shukla, Studies on low altitude clouds over New Delhi, India using lidar. MAPAN, 31 (2016) 137–144. https://doi.org/10.1007/s12647-016-0166-4.

    Article  Google Scholar 

  26. R. Agishev, B. Gross, F. Moshary, A. Gilerson and S. Ahmed, Simple approach to predict APD/PMT lidar detector performance under sky background using dimensionless parametrization. Opt. Lasers Eng., 44 (2006) 779–796. https://doi.org/10.1016/j.optlaseng.2005.07.010.

    Article  Google Scholar 

  27. Y. Qin, T.T. Vu, Y. Ban and Z. Niu, Range determination for generating point clouds from airborne small footprint LiDAR waveforms. Opt. Express, 20 (2012) 25935. https://doi.org/10.1364/OE.20.025935.

    Article  ADS  Google Scholar 

  28. D. Müller and Raman lidar observations of aged Siberian and Canadian forest fire smoke in the free troposphere over Germany in, Microphysical particle characterization. J. Geophys. Res. (2003). https://doi.org/10.1029/2004JD005756.

    Article  Google Scholar 

  29. M. Komppula, T. Mielonen, A. Arola, K. Korhonen, H. Lihavainen, A.-P. Hyvarinen, H. Baars, R. Engelmann, D. Althausen, A. Ansmann, D. Muller, T.S. Panwar, R.K. Hooda, V.P. Sharma, V.-M. Kerminen, K.E.J. Lehtinen and Y. Viisanen, One year of Raman-lidar measurements in Gual Pahari EUCAARI site close to New Delhi in India: seasonal characteristics of the aerosol vertical structure. Atmospheric Chem. Phys. Discuss., 10 (2010) 31123–31151. https://doi.org/10.5194/acpd-10-31123-2010.

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to Director, CSIR- National Physical Laboratory and Head Environmental Sciences and Biomedical Metrology Division (ESBMD) for the required support. Mr. Jaswant is thankful to Council of Scientific and Industrial Research (CSIR) for providing research fellowship and also to Academy of Scientific and Innovative Research (AcSIR) for facilitating as its PhD student.

Funding

This work was supported by the Council of Scientific and Industrial Research network project [Grant Numbers PSC-0112]; SERB Sponsored project [Grant Number GAP151332].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soman R. Radhakrishnan.

Ethics declarations

Conflict of interest

Authors have no financial interests in the manuscript and there is no other conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaswant, Radhakrishnan, S.R., Singh, S.K. et al. Dead Time Estimation of the Transient Digitizer of the Raman Lidar System Installed at a High-Altitude Station Palampur in India. MAPAN 36, 833–842 (2021). https://doi.org/10.1007/s12647-021-00496-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12647-021-00496-4

Keywords

Navigation