Skip to main content
Log in

JM-20, a Benzodiazepine-Dihydropyridine Hybrid Molecule, Inhibits the Formation of Alpha-Synuclein-Aggregated Species

  • Research Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Studies showed that JM-20, a benzodiazepine-dihydropyridine hybrid molecule, protects against rotenone and 6-hydroxydopamine neurotoxicity. However, its protective effects against cytotoxicity induced by endogenous neurotoxins involved in Parkinson’s disease (PD) pathogenesis have never been investigated. In this study, we evaluated the ability of JM-20 to inhibit alpha-synuclein (aSyn) aggregation. We also evaluated the interactions of JM-20 with aSyn by molecular docking and molecular dynamics and assessed the protective effect of JM-20 against aminochrome cytotoxicity. We demonstrated that JM-20 induced the formation of heterogeneous amyloid fibrils, which were innocuous to primary cultures of mesencephalic cells. Moreover, JM-20 reduced the average size of aSyn positive inclusions in H4 cells transfected with SynT wild-type and synphilin-1-V5, but not in HEK cells transfected with synphilin-1-GFP. In silico studies showed the interaction between JM-20 and the aSyn-binding site. Additionally, we showed that JM-20 protects SH-SY5Y cells against aminochrome cytotoxicity. These results reinforce the potential of JM-20 as a neuroprotective compound for PD and suggest aSyn as a molecular target for JM-20.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets used and analyzed in this study are available from the corresponding author upon reasonable request.

References

  • Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindahl E (2015) Gromacs: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2:19–25. https://doi.org/10.1016/j.softx.2015.06.001

  • Alvarez-Castelao B, Castaño JG (2011) Synphilin-1 inhibits alpha-synuclein degradation by the proteasome. Cell Mol Life Sci 68(15):2643–2654

    Article  CAS  Google Scholar 

  • Arlehamn CS, Lindestam RD, Pham J, Kuan R, Frazier A, Dutra JR, Phillips E, Mallal S, Roederer M, Marder KS (2020) Α-synuclein-specific T cell reactivity is associated with preclinical and early Parkinson’s disease. Nat Commun 11(1):1–11

    Google Scholar 

  • Bellomo G, Paciotti S, Gatticchi L, Parnetti L (2020) The vicious cycle between Α-synuclein aggregation and autophagic-lysosomal dysfunction. Mov Disord 35(1):34–44

    Article  CAS  Google Scholar 

  • Bender A, Desplats P, Spencer B, Rockenstein E, Adame A, Elstner M, Laub C, Mueller S, Koob AO, Mante M (2013) Tom40 mediates mitochondrial dysfunction induced by Α-synuclein accumulation in Parkinson’s disease.". PLoS ONE 8(4):e62277

    Article  CAS  Google Scholar 

  • Berendsen HJ, Grigera JR, Straatsma TP (1987) The missing term in effective pair potentials. J Phys Chem 91(24):6269–6271. https://doi.org/10.1021/j100308a038

  • Berendsen HJC, van Postma JPM, van Gunsteren WF, DiNola ARHJ, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81(8):3684–3690

    Article  CAS  Google Scholar 

  • Berendsen HJC, van der Spoel D, van Drunen R (1995) Gromacs: a message-passing parallel molecular dynamics implementation. Comput Phys Commun 91(1–3):43–56

    Article  CAS  Google Scholar 

  • Briceño A, Muñoz P, Brito P, Huenchuguala S, Segura-Aguilar J, Paris IB (2016) Aminochrome toxicity is mediated by inhibition of microtubules polymerization through the formation of adducts with tubulin. Neurotox Res 29(3):381–393

    Article  Google Scholar 

  • Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys 126(1):014101. https://doi.org/10.1063/1.2408420

  • Coelho-Cerqueira E, Carmo-Gonçalves P, Pinheiro AS, Cortines J, Follmer C (2013) Α-synuclein as an intrinsically disordered monomer–fact or artefact? FEBS J 280(19):4915–4927

    Article  CAS  Google Scholar 

  • Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N⋅ log (N) method for Ewald sums in large systems. J Chem Phys 98(12):10089–10092

    Article  CAS  Google Scholar 

  • de Araújo FM, Ferreira RS, Souza CS, Santos CCD, Rodrigues TLRS, Juliana Helena C, e Silva, Juciano Gasparotto, Daniel Pens Gelain, Ramon S El-Bachá, Costa Maria de Fátima D (2018) Aminochrome decreases Ngf, Gdnf and induces neuroinflammation in organotypic midbrain slice cultures. Neurotoxicology 66:98–106

  • De Araújo FM, Frota AF, de Jesus LB, Macedo TC, Cuenca-Bermejo L, Sanchez-Rodrigo C, Ferreira KM, de Oliveira JV, de Fatima Dias Costa M, Segura-Aguilar J, Costa SL (2022) Aminochrome induces neuroinflammation and dopaminergic neuronal loss: a new preclinical model to find anti-inflammatory and neuroprotective drugs for Parkinson’s disease. Cell Mol Neurobiol 1–17.

  • Fernandes L, Messias B, Pereira-Neves A, Azevedo EP, Araújo J, Foguel D, Palhano FL (2020) Green tea polyphenol microparticles based on the oxidative coupling of Egcg inhibit amyloid aggregation/cytotoxicity and serve as a platform for drug delivery. ACS Biomater Sci Eng 6(8):4414–4423. https://doi.org/10.1021/acsbiomaterials.0c00188

  • Figueredo YN, Rodríguez EO, Reyes YV, Domínguez CC, Parra AL, Sánchez JR, Hernández RD, Verdecia MP, Pardo GL, Andreu. (2013) Characterization of the anxiolytic and sedative profile of Jm-20: a novel benzodiazepine–dihydropyridine hybrid molecule. Neurol Res 35(8):804–812

    Article  CAS  Google Scholar 

  • Fonseca-Fonseca LA, Amaral VD, da Silva M, Wong-Guerra J-S, Yaquis ASP, Ochoa-Rodríguez E, Verdecia-Reyes Y, Mendes F, de Araújo R, Santana C, Outeiro TF (2021) Jm-20 protects against 6-hydroxydopamine-induced neurotoxicity in models of Parkinson’s disease: mitochondrial protection and antioxidant properties. Neurotoxicology 82:89–98

    Article  CAS  Google Scholar 

  • Fonseca-Fonseca LA, Wong-Guerra M, Ramírez-Sánchez J, Montano-Peguero Y, Yaquis ASP, Rodríguez AM, Amaral VD, da Silva S, Costa L, Pardo-Andreu GL, Núñez-Figueredo Y (2019) Jm-20, a novel hybrid molecule, protects against rotenone-induced neurotoxicity in experimental model of Parkinson’s disease. Neurosci Lett 690:29–35

    Article  CAS  Google Scholar 

  • Fährrolfes R, Bietz S, Flachsenberg F, Meyder A, Nittinger E, Otto T, Volkamer A, Rarey M (2017) Proteins plus: a web portal for structure analysis of macromolecules.". Nucleic Acids Res 45(W1):W337–W343

    Article  Google Scholar 

  • Gomes D, Sousa G, da Silva A, Pascutti P (2012) Surfinmd. Accessed 2 Jun 2021. Form of Item. https://lmdm.biof.ufrj.br/software/surfinmd/index

  • Gupta E, Gupta SR, Kumar A, Kulshreshtha A, Niraj RR (2019) Molecular docking study to identify potent inhibitors of alpha-synuclein aggregation of Parkinson’s disease

  • Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) Lincs: a linear constraint solver for molecular simulations. J Comput Chem 18(12):1463–1472

    Article  CAS  Google Scholar 

  • Hess B, Kutzner C, Van Der Spoel D, Lindahl E (2008) Gromacs 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation S1549-9618(70)00301-6.

  • Hsieh C-J, Ferrie JJ, Kuiying Xu, Lee I, Graham TJA, Zhude Tu, Jennifer Yu, Dhavale D, Kotzbauer P, James E, Petersson. (2018) Alpha synuclein fibrils contain multiple binding sites for small molecules. ACS Chem Neurosci 9(11):2521–2527

    Article  CAS  Google Scholar 

  • Hu Z, Wang W, Ling J, Jiang C (2016) Α-mangostin inhibits Α-synuclein-induced microglial neuroinflammation and neurotoxicity. Cell Mol Neurobiol 36(5):811–820

    Article  CAS  Google Scholar 

  • Huenchuguala S, Muñoz P, Segura-Aguilar J (2017) The importance of mitophagy in maintaining mitochondrial function in U373mg cells. Bafilomycin A1 restores aminochrome-induced mitochondrial damage. ACS Chem Neurosci 8(10):2247–2253

  • Huenchuguala S, Muñoz P, Zavala P, Villa M, Cuevas C, Ahumada U, Graumann R, Nore BF, Couve E, Mannervik B (2014) Glutathione transferase Mu 2 protects glioblastoma cells against aminochrome toxicity by preventing autophagy and lysosome dysfunction. Autophagy 10(4):618–630

    Article  CAS  Google Scholar 

  • Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22(12):2577–637. https://doi.org/10.1002/bip.360221211

  • Kalinderi K, Bostantjopoulou S, Fidani L (2016) The genetic background of Parkinson’s disease: current progress and future prospects. Acta Neurol Scand 134(5):314–326

    Article  CAS  Google Scholar 

  • Lindahl E, Berk H, van der Spoel D (2001) Gromacs 3.0: a package for molecular simulation and trajectory analysis. Mol Model Ann 7(8):306–317. https://doi.org/10.1007/s008940100045

  • Lázaro DF, Rodrigues EF, Langohr R, Shahpasandzadeh H, Ribeiro T, Guerreiro P, Gerhardt E, Kröhnert K, Klucken J, Pereira MD (2014) Systematic comparison of the effects of alpha-synuclein mutations on its oligomerization and aggregation. PLoS Genet 10(11):e1004741

    Article  Google Scholar 

  • Miyamoto S, Kollman PA (1992) Settle: an analytical version of the shake and rattle algorithm for rigid water models. J Comput Chem 13(8):952–962

    Article  CAS  Google Scholar 

  • Muñoz P, Cardenas S, Huenchuguala S, Briceño A, Couve E, Paris I, Segura-Aguilar J (2015) Dt-diaphorase prevents aminochrome-induced alpha-synuclein oligomer formation and neurotoxicity. Toxicol Sci 145(1):37–47

    Article  Google Scholar 

  • Muñoz P, Huenchuguala S, Paris I, Cuevas C, Villa M, Caviedes P, Segura-Aguilar J, Tizabi Y (2012) Protective effects of nicotine against aminochrome-induced toxicity in substantia nigra derived cells: implications for Parkinson’s disease. Neurotox Res 22(2):177–180

    Article  Google Scholar 

  • Ngoungoure VL, Ndam PM, Tizabi Y, Valdes R, Moundipa PF, Segura-Aguilar J (2019) Protective effects of crude plant extracts against aminochrome-induced toxicity in human astrocytoma cells: implications for Parkinson’s disease. Clinical Pharmacology and Translational Medicine 3(1):125

    Google Scholar 

  • Nuñez-Figueredo Y, Ramírez-Sánchez J, Pardo GL, Andreu E-R, Verdecia-Reyes Y, Souza DO (2018) Multi-targeting effects of a new synthetic molecule (Jm-20) in experimental models of cerebral ischemia. Pharmacol Rep 70(4):699–704

    Article  Google Scholar 

  • Nuñez-Figueredo Y, Ramírez-Sánchez J, Delgado-Hernández R, Porto-Verdecia M, Ochoa-Rodríguez E, Verdecia-Reyes Y, Marin-Prida J, González-Durruthy M, Uyemura SA, Rodrigues FP (2014) Jm-20, a novel benzodiazepine–dihydropyridine hybrid molecule, protects mitochondria and prevents ischemic insult-mediated neural cell death in vitro. Eur J Pharmacol 726:57–65

    Article  Google Scholar 

  • Ordonez DG, Lee MK, Feany MB (2018) Α-synuclein induces mitochondrial dysfunction through spectrin and the actin cytoskeleton. Neuron 97(1):108–124. e6.

  • Palhano FL, Leme LP, Busnardo RG, Foguel D (2009) Trapping the monomer of a non-amyloidogenic variant of transthyretin: exploring its possible use as a therapeutic strategy against transthyretin amyloidogenic diseases. J Biol Chem 284(3):1443–1453

    Article  CAS  Google Scholar 

  • Paris I, Munoz P, Huenchuguala S, Couve E, Sanders LH, Greenamyre JT, Caviedes P, Segura-Aguilar J (2011) Autophagy protects against aminochrome-induced cell death in substantia nigra-derived cell line. Toxicol Sci 121(2):376–388

    Article  CAS  Google Scholar 

  • Pronk S, Páll S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, Shirts MR, Smith JC, Kasson PM, van der Spoel D, Hess B, Lindahl E (2013) Gromacs 4.5: A high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29(7):845–54. https://doi.org/10.1093/bioinformatics/btt055

  • Rondón-Villarreal P, López WOC (2020) Identification of potential natural neuroprotective molecules for Parkinson’s disease by using chemoinformatics and molecular docking. J Mol Graph Model 97:107547

    Article  Google Scholar 

  • Sander C, Schneider R (1991) Database of homology-derived protein structures and the structural meaning of sequence alignment. Proteins 9(1):56–68. https://doi.org/10.1002/prot.340090107

    Article  CAS  Google Scholar 

  • Santos CC, Muñoz P, Almeida ÁM, de Lima David JP, David JM, Lima Costa S, Segura-Aguilar J, Silva VD (2020) The flavonoid agathisflavone from Poincianella pyramidalis prevents aminochrome neurotoxicity. Neurotox Res (3):579–584. https://doi.org/10.1007/s12640-020-00237-6

  • Santos CC, Araújo FM, Ferreira RS, Silva VB, Silva JHC, Grangeiro MS, Soares ÉN, Érica Patricia L, Pereira CS, Souza, and Silvia L Costa. (2017) Aminochrome induces microglia and astrocyte activation. Toxicol in Vitro 42:54–60

    Article  CAS  Google Scholar 

  • Schmid N, Eichenberger AP, Choutko A, Riniker S, Winger M, Mark AE, van Gunsteren WF (2011) Definition and testing of the gromos force-field versions 54a7 and 54b7. Eur Biophys J 40(7):843–56. https://doi.org/10.1007/s00249-011-0700-9

  • Segura-Aguilar J, Paris I (2014) Mechanisms of dopamine oxidation and Parkinson’s disease. Handbook of Neurotoxicity/ed. Kostrzewa RM New York, NY: Springer New York: 865–883

  • Segura-Aguilar J (2017) On the role of endogenous neurotoxins and neuroprotection in Parkinson’s disease. Neural Regen Res 12(6):897

    Article  CAS  Google Scholar 

  • Segura-Aguilar J (2018) Neurotoxins as preclinical models for Parkinson’s disease. Neurotox Res 34(4):870–877

    Article  CAS  Google Scholar 

  • Segura-Aguilar J (2019) On the role of aminochrome in mitochondrial dysfunction and endoplasmic reticulum stress in Parkinson’s disease. Front Neurosci 13:271

    Article  Google Scholar 

  • Segura-Aguilar J (2021) Dopamine oxidation to neuromelanin and neurotoxic metabolites. In: Segura-Aguilar J (ed) Clinical Studies and Therapies in Parkinson’s Disease : Translations from Preclinical Models. Academic Press Inc., United States, pp 213–223

    Chapter  Google Scholar 

  • Shirakashi Y, Kawamoto Y, Tomimoto H, Takahashi R, Ihara M (2006) Α-synuclein is colocalized with 14-3-3 and synphilin-1 in A53t transgenic mice. Acta Neuropathol 112(6):681–689

    Article  CAS  Google Scholar 

  • Sidhu A, Wersinger C, Vernier P (2004) Does Α-synuclein modulate dopaminergic synaptic content and tone at the synapse? FASEB J 18(6):637–647

    Article  CAS  Google Scholar 

  • Silva V, Segura-Aguilar J (2021) State and perspectives on flavonoid neuroprotection against aminochrome-induced neurotoxicity. Neural Regen Res 16(9):1797

    Article  CAS  Google Scholar 

  • Spillantini MG, Anthony Crowther R, Jakes R, Hasegawa M, Goedert M (1998) Α-synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with Lewy bodies. Proc Natl Acad Sci 95(11):6469–6473

    Article  CAS  Google Scholar 

  • Stroet M, Caron B, Visscher KM, Geerke DP, Malde AK, Mark AE (2018) Automated topology builder version 3.0: prediction of solvation free enthalpies in water and hexane. J Chem Ther Comput 14(11):5834–5845

  • Touw WG, Baakman C, Black J, Te Beek TA, Krieger E, Joosten RP, Vriend G (2015) A series of Pdb-related databanks for everyday needs. Nucleic Acids Res 43(Database issue): D364–8. https://doi.org/10.1093/nar/gku1028

  • Ulmer TS, Bax Ad, Cole NB, Nussbaum RL (2005) Structure and dynamics of micelle-bound human Α-synuclein. J Biol Chem 280(10):9595–9603

    Article  CAS  Google Scholar 

  • Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ (2005) Gromacs: fast, flexible, and free. J Comput Chem 26(16): 1701–18. https://doi.org/10.1002/jcc.20291

  • van der Spoel D, van Maaren PJ, Larsson P, Tîmneanu N (2006) Thermodynamics of hydrogen bonding in hydrophilic and hydrophobic media. J Phys Chem B 110(9):4393–4398

    Article  Google Scholar 

  • Xiong R, Siegel D, Ross D (2014) Quinone-induced protein handling changes: implications for major protein handling systems in quinone-mediated toxicity. Toxicol Appl Pharmacol 280(2):285–295

    Article  CAS  Google Scholar 

  • Zhou ZD, Lim TM (2009) Dopamine (Da) induced irreversible proteasome inhibition via Da derived quinones. Free Radical Res 43(4):417–430

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the postgraduate program in immunology at the Federal University of Bahia.

Funding

CCS, SLC, and JSA were supported by grants from the Coordenação de Apoio de Pessoal de Nível Superior (CAPES/PVE – 189576/09–2014); VDAS and SLC were supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPQ Edital Universal/2018 – 429127/2018–9 and Research fellowship). In silico research project (project ID: proj651) was developed with the help of CENAPAD-SP (National Center for High Performance Computing in São Paulo), UNICAMP/FINEP – MCT. LS was supported by Fundação para Ciência e Tecnologia (SFRH/BD/143286/2019). TFO was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy (EXC 2067/1 – 390729940) and by SFB1286 (Project B8).

Author information

Authors and Affiliations

Authors

Contributions

Conception and design of the study (VDAS, DF, TFO, YNF, FHAL, MCSJ, JSA); acquisition of data (CCS, TRCP, LS, LAFF, PM, AMANA, ACSC, JTS, EOR, FLP, DBB, MRB), analysis and interpretation of data (VDAS, SLC, MFDC, DF, TFO, YNF, FHAL, MCSJ, SSRP); drafting the article or revising it critically for important intellectual content (VDAS, SLC, MFDC, DF, TFO, YNF, FHAL, MCSJ, SSRP, JSA).

Corresponding author

Correspondence to Victor Diogenes Amaral Silva.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 69 KB)

Supplementary file2 (DOC 66 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, C.C., Cardim-Pires, T.R., Shvachiy, L. et al. JM-20, a Benzodiazepine-Dihydropyridine Hybrid Molecule, Inhibits the Formation of Alpha-Synuclein-Aggregated Species. Neurotox Res 40, 2135–2147 (2022). https://doi.org/10.1007/s12640-022-00559-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-022-00559-7

Keywords

Navigation