Skip to main content
Log in

Neuromodulatory Propensity of Bacopa monnieri Leaf Extract Against 3-Nitropropionic Acid-Induced Oxidative Stress: In Vitro and In Vivo Evidences

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

We previously reported the propensity of Bacopa monnieri (BM) leaf powder to modulate endogenous levels of oxidative stress markers in the brain of prepubertal mice. In this study, we tested the hypothesis that pretreatment with an alcoholic extract of BM (BME) could provide neuroprotection against 3-nitropropionic acid (3-NPA)-induced oxidative stress under in vitro and in vivo conditions. In chemical systems, BME exhibited multiple free radical scavenging ability. Further, BME pretreatment completely abolished 3-NPA-induced oxidative stress response in brain (striatum, St) mitochondria in vitro. Likewise, pretreatment of dopaminergic (N27 cell lines) cells with BME not only abrogated the generation of reactive oxygen species (ROS) levels, but also offered marked protection against 3-NPA-mediated cytotoxicity. These findings were further validated employing a 3-NPA mice model in vivo. We determined the degree of oxidative stress induction, redox status, enzymic antioxidants, protein oxidation, and cholinergic function in various brain regions of male mice provided with BME for 10 days (prophylaxis) followed by 3-NPA challenge (75 mg/kg bw/day, i.p.). BME prophylaxis completely prevented 3-NPA-induced oxidative dysfunctions in St and other brain regions. 3-NPA-induced robust elevation of oxidative markers (malondialdehyde levels, ROS generation, hydroperoxide levels and protein carbonyls) in cytosol of brain regions was predominantly abolished among mice given BME prophylaxis. Interestingly, BME prophylaxis also prevented the depletion of reduced glutathione, thiol levels, and perturbations in antioxidant enzymes caused by 3-NPA. Collectively these findings provide evidence on the significant prophylactic neuroprotective efficacy of BME in prepubertal mice brain. Based on these data, it is hypothesized that BME can serve as a useful adjuvant in protecting brain against oxidative-mediated neurodegenerative disorders involving oxidative stress conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

LPO:

Lipid peroxidation

ROS:

Reactive oxygen species

TBARS:

Thiobarbituric acid reactive substances

MDA:

Malondialdehyde

DCF:

2′,7′-Dichloro-fluorescein

DCF-DA:

2′,7′-Dichloro-fluorescein diacetate

BM:

Bacopa monnieri

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  PubMed  CAS  Google Scholar 

  • Allan J, Damodaran A, Deshmukh NS, Goudar KS, Amit A (2007) Safety evaluation of a standardized phytochemical composition extracted from Bacopa monnieri in Sprague-Dawley rats. Food Chem Toxicol 45:1928–1937

    Article  CAS  Google Scholar 

  • Aoyama K, Watabe M, Nakaki T (2008) Regulation of neuronal glutathione synthesis. J Pharmacol Sci 108:227–238

    Article  PubMed  CAS  Google Scholar 

  • Beal MF, Ferrante RJ (2004) Experimental therapeutics in transgenic mouse models of Huntington’s disease. Nat Rev Neurosci 5:373–384

    Article  PubMed  CAS  Google Scholar 

  • Bharath S, Andersen JK (2005) Glutathione depletion in a midbrain-derived immortalized dopaminergic cell line results in limited tyrosine nitration of mitochondrial complex I subunits: implications for Parkinson’s disease. Antioxid Redox Signal 7:900–910

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharya SK, Kumar A, Ghosal S (1999) Effect of Bacopa monniera on animal models of Alzheimer’s disease and perturbed central cholinergic markers of cognition in rats. Res Commun Pharmacol Toxicol 4:1–12

    Google Scholar 

  • Binienda Z, Simmons C, Hussain S, WJr Slikker, Ali SF (1998) Effect of acute exposure to 3-nitropropionic acid on activities of endogenous antioxidants in the rat brain. Neurosci Lett 251:173–176

    Article  PubMed  CAS  Google Scholar 

  • Butterfield DA, Stadtman ER (1997) Protein oxidation processes in aging brain. Adv Cell Aging Gerontol 2:161–191

    Article  CAS  Google Scholar 

  • Butterfield DA, Hardas SS, Lange ML (2010) Oxidatively modified glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and Alzheimer’s disease: many pathways to neurodegeneration. J Alzheimers Dis 20:369–393

    PubMed  CAS  Google Scholar 

  • Carter P (1971) Spectrophotometric determination of serum iron at submicrogram level with a new reagent (ferrozine). Anal Biochem 40:450–458

    Article  PubMed  CAS  Google Scholar 

  • Chakravarty AK, Garai S, Masuda K, Nakane T, Kawahara N (2003) Bacopasides III–V: three new triterpenoid glycosides from Bacopa monniera. Chem Pharm Bull 51:215–217

    Article  PubMed  CAS  Google Scholar 

  • Chopra RN (1958) Indigenous drugs of India, 2nd ed. U.N. Dhur and Sons, Calcutta, p 341.22

    Google Scholar 

  • Chowdhuri DK, Parmar D, Kakkar P, Shukla R, Seth PK, Srimal RC (2002) Antistress effects of bacosides of Bacopa monnieri: modulation of Hsp70 expression, superoxide dismutase and cytochrome P450 activity in rat brain. Phytother Res 16:639–645

    Article  PubMed  CAS  Google Scholar 

  • Chung SK, Osawa T, Kawakishi S (1997) Hydroxyl radical scavenging effects of spices and scavengers from Brown Mustard (Brassica nigra). Biosci Biotech Biochem 61:118–123

    Article  CAS  Google Scholar 

  • Cotelle A, Bernier JL, Catteau JP, Pommery J, Wallet JC, Gaydou EM (1996) Antioxidant properties of hydroxyl-flavones. Free Radic Biol Med 20:35–36

    Article  PubMed  CAS  Google Scholar 

  • Dalle-Donne I, Rosi R, Giustarini D, Milzani A, Colombo R (2003) Protein carbonyl groups as biomarkers of oxidative stress. Clin Chim Acta 329:23–38

    Article  PubMed  CAS  Google Scholar 

  • Deepak M, Sangli GK, Arun PC, Amit A (2005) Quantitative determination of the major saponin mixture bacoside A in Bacopa monnieri by HPLC. Phytochem Anal 16:24–29

    Article  PubMed  CAS  Google Scholar 

  • Dhanasekaran M, Tharakan B, Holcomb LA, Angie RH, Young KA, Manyam BV (2007) Neuroprotective mechanisms of ayurvedic antidementia botanical Bacopa monniera. Phytother Res 21:965–969

    Article  PubMed  CAS  Google Scholar 

  • Dumont MF, Beal M (2011) Neuroprotective strategies involving ROS in Alzheimer disease. Free Radic Biol Med 51:1014–1026

    Google Scholar 

  • Ellman GE (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77

    Article  PubMed  CAS  Google Scholar 

  • Ellmann GE, Courtney KD, Andersen V, Featherstone RM (1961) A new and rapid colorimetric determination of acetyl cholinesterase activity. Biochem Pharmacol 7:88–95

    Article  Google Scholar 

  • Flohe L, Gunzler WA (1984) Assays of glutathione peroxidase. Methods Enzymol 105:114–121

    Article  PubMed  CAS  Google Scholar 

  • Gohil KJ, Patel JA (2010) A review on Bacopa Monneira: Current research and future prospects. Intl J Green Pharma 4:1–9

    Article  Google Scholar 

  • Guthenberg C, Alin P, Mannervik B (1985) Glutathione transferase from rat testis. Methods Enzymol 113:507–510

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B, Gutteridge JM, Aruoma OI (1987) The Deoxyribose method: a simple test tube assay for determination of rate constants for reactions of hydroxyl radicals. Anal Biochem 165:215–259.23

    Article  PubMed  CAS  Google Scholar 

  • Herrera-Mundo N, Sitges M (2010) Mechanisms underlying striatal vulnerability to 3-nitropropionic acid. J Neurochem 114:597–605

    Article  PubMed  CAS  Google Scholar 

  • Hosamani R, Muralidhara (2009) Neuroprotective effects of Bacopa monnieri against rotenone induced oxidative stress and neurotoxicity in Drosophila melanogaster. NeuroToxicology 30:987–995

    Article  Google Scholar 

  • Hosamani R, Muralidhara (2010) Prophylactic treatment with Bacopa monnieri leaf powder mitigates Paraquat induced lethality and oxidative stress in Drosophila melanogaster. Indian J Biochem Biophys 47:75–82

    PubMed  CAS  Google Scholar 

  • Jagatha B, Mythri RB, Vali S, Bharath MM (2008) Curcumin treatment alleviates the effects of glutathione depletion in vitro and in vivo: therapeutic implications for Parkinson’s disease explained via in silico studies. Free Radic Biol Med 44:907–917

    Article  PubMed  CAS  Google Scholar 

  • Jyoti A, Sharma D (2006) Neuroprotective role of Bacopa monnieri extract against aluminium-induced oxidative stress in the hippocampus of rat brain. NeuroToxicology 27:451–457

    Article  PubMed  CAS  Google Scholar 

  • Kaufer D, Friedman A, Seidman S, Soreq H (1999) Anticholinesterases induce multigenic transcriptional feedback response suppressing cholinergic neurotransmission. Chem Biol Interact 119–120:349–360

    Article  PubMed  Google Scholar 

  • Kishore K, Singh M (2005) Effect of bacosides, alcoholic extract of Bacopa monniera Linn (Brahmi) on experimental amnesia in mice. Indian J Exp Biol 43:640–645

    PubMed  Google Scholar 

  • Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenzi A, Ahn BW, Shaltiel S, Stadtman ER (1990) Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 186:464–478

    Article  PubMed  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement using folin-phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Mahato SB, Garia S, Chakravarty AK (2000) Bacopasaponins E and F: two jujubogenin bisdesmodies from Bacopa monniera. Phytochemistry 53:711–714

    Article  PubMed  CAS  Google Scholar 

  • Marcocci L, Maguire JJ, Droy-Lefaix MT, Packer L (1994) The nitric oxide-scavenging properties of Ginkgo biloba extract EGb 761. Biochem Biophys Res Commun 201:748–755

    Article  PubMed  CAS  Google Scholar 

  • Mattson MP, Chan SL (2003) Neuronal and glial calcium signalling in Alzheimer’s disease. Cell Calcium 34:385–397

    Article  PubMed  CAS  Google Scholar 

  • McCord JM, Fridovich I (1969) Superoxide dismutase- An enzymic function for erythrocuprein (Hemocuprein). J Biol Chem 244:6049–6055

    PubMed  CAS  Google Scholar 

  • Meshorer E, Erb C, Gazit R, Pavlovsky L, Kaufer D, Friedman A, Glick D, Ben-Arie N, Soreq H (2002) Alternative splicing and neuritic mRNA translocation under long-term neuronal hypersensitivity. Science 295:508–512

    Article  PubMed  CAS  Google Scholar 

  • Mokrasch LC, Teschke EJ (1984) Glutathione content of cultured cells and rodent brain regions: a specific fluorimetric assay. Anal Biochem 140:506–509

    Article  PubMed  CAS  Google Scholar 

  • Moreadith RW, Fiskum G (1984) Isolation of mitochondria from ascites tumor cells permeabilized with digitonin. Anal Biochem 137:360–367

    Article  PubMed  CAS  Google Scholar 

  • Ohkawa H, Ohnishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  PubMed  CAS  Google Scholar 

  • Omaya ST, Turnball JD, Sauberlich HE (1979) Selected methods for dtermination of ascorbic acid in animal cells, tissues and fluids (ascorbic acid). Methods Enzymol 62:1–11

    Google Scholar 

  • Peters T, Giovanniello TJ, Apt L, Ross JF (1956) A simple improved method for the determination of serum iron. J Lab ClinMed 48:280–288

    CAS  Google Scholar 

  • Rai D, Bhatia G, Palit G, Pal R, Singh S, Singh HK (2003) Adaptogenic effect of Bacopa monniera (Brahmi). Pharmacol Biochem Behav 75:823–830

    Article  PubMed  CAS  Google Scholar 

  • Rastogi S, Kulshreshtha DK (1999) Bacoside A2—a triterpenoid saponin from Bacopa monniera. Indian J Chem 38:353–356

    Google Scholar 

  • Robak J, Gryglewski RJ (1998) Flavanoids are scavengers of superoxide anions. Biochem Pharmacol 37:837

    Article  Google Scholar 

  • Russo A, Borrelli F (2005) Bacopa monnieri, a reputed nootropic plant: an overview. Phytomedicine 12:305–317

    Article  PubMed  CAS  Google Scholar 

  • Saraf MK, Prabhakar S, Khanduja KL, Anand A (2011) Bacopa monnieri attenuates scopalmine-induced impairment of spatial memory in mice Evidence-based complementary and alternative medicine. doi:10.1093/ecam/neq038

  • Shinomol GK, Muralidhara (2007) Differential induction of oxidative impairments in brain regions of male mice following subchronic consumption of Khesari dhal (Lathyrus sativus) and detoxified khesari dhal. NeuroToxicology 28:798–806

    Article  PubMed  CAS  Google Scholar 

  • Shinomol GK, Muralidhara (2008a) Effect of Centella asiatica leaf powder on oxidative markers in brain regions of prepubertal mice in vivo and its in vitro efficacy to ameliorate 3-NPA-induced oxidative stress in mitochondria. Phytomedicine 15:971–984

    Article  PubMed  Google Scholar 

  • Shinomol GK, Muralidhara (2008b) Prophylactic neuroprotective property of Centella asiatica against 3-nitropropionic acid induced oxidative stress and mitochondrial dysfunctions in brain regions of prepubertal mice. NeuroToxicology 29:948–957

    Article  PubMed  CAS  Google Scholar 

  • Shinomol GK, Muralidhara (2011) Bacopa monnieri modulates endogenous cytoplasmic and mitochondrial oxidative markers in prepubertal mice brain. Phytomedicine 18:317–326

    Article  PubMed  Google Scholar 

  • Shinomol GK, Hosamani R, Muralidhara (2009) Prophylaxis with Centella asiatica confers protection to prepubertal mice against 3-nitropropionic acid induced oxidative stress in the brain. Phytother Res 24:885–892

    Google Scholar 

  • Shinomol GK, Muralidhara, Bharath MMS (2011a) Exploring the role of Brahmi (Bacopa monnieri and Centella asiatica) in brain function and therapy. Recent Patents Endocr Metab Immune Drug Discov 5:33–49

    Article  CAS  Google Scholar 

  • Shinomol GK, Muralidhara, MMS Bharath (2011b) Pretreatment with Bacopa monnieri extract offsets 3-nitropropionic acid -induced mitochondrial oxidative stress and dysfunctions in striatum of prepubertal mice brain. Can J Physiol Pharmacol (Revision submitted)

  • Singh HK, Dhawan BN (1997) Neuropsychopharmacological effects of the ayurvedic nootropic Bacopa monniera Linn (Brahmi). Indian J Pharmacol 29S:359–365

    Google Scholar 

  • Tripathi YB, Chaurasia S, Tripathi E, Upadhyay A, Dubey GP (1996) Bacopa monniera Linn. as an antioxidant: mechanism of action. Indian J Exp Biol 34:523–526

    PubMed  CAS  Google Scholar 

  • Trounce IA, Kim YL, Jun AS, Wallace DC (1996) Assessment of mitochondrial oxidative phosphorylation in patient muscle biopsies, lymphoblasts and transmitochondrial cell lines. Methods Enzymol 264:484–509

    Article  PubMed  CAS  Google Scholar 

  • Vali S, Mythri RB, Jagatha B, Padiadpu J, Ramanujan KS, Andersen JK, Gorin F, Bharath MMS (2007) Integrating glutathione metabolism and mitochondrial dysfunction with implications for Parkinson’s disease: a dynamic model. Neuroscience 149:917–930

    Article  PubMed  CAS  Google Scholar 

  • Vollala VR, Upadhya S, Nayak S (2010) Effect of Bacopa monnieri Linn (brahmi) extract on learning and memory in rats: A behavioral study. J Vet Behav Clin Appl Res 5:69–74

    Article  Google Scholar 

  • Wolff SP (1994) Ferrous ion oxidation in the presence of ferric ion indicator xylenol orange for measurement of hydroperoxides. Methods Enzymol 233:182–189

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank the Director, CFTRI for his keen interest in this study. The first author thanks the Council of Scientific and Industrial research (CSIR), New Delhi for the award of a Junior and Senior Research Fellowship. A part of this study was funded by a fast-track grant from the Department of Science and Technology (DST), India (to MMSB).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muralidhara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shinomol, G.K., Bharath, M.M.S. & Muralidhara Neuromodulatory Propensity of Bacopa monnieri Leaf Extract Against 3-Nitropropionic Acid-Induced Oxidative Stress: In Vitro and In Vivo Evidences. Neurotox Res 22, 102–114 (2012). https://doi.org/10.1007/s12640-011-9303-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-011-9303-6

Keywords

Navigation