Skip to main content
Log in

Electrochemical Detection of 2,4,6-Trinitrotoluene on L-Cysteine-Modified Porous Silicon Electrode in Dimethyl Sulfoxide Solution

  • Research
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

In this work, the electrochemical process of 2,4,6- trinitrotoluene (TNT) reduction on a new type of electrode based on a L-Cysteine-modified porous silicon (PSi) in organic electrolyte was studied. The functionalized by silanization process with APTES was used to prepare the PSi electrode. Cyclic voltammograms of modified-PSi electrode in DMSO/ TBAFB solution containing TNT exhibited two major reduction peaks in the potential rang (-0.7 V—+ 0.4 V / Ag/AgCl), the third reduction peak at -0.64 V presents a very weak current intensity. The presence of these peaks corresponds to the multistep process of TNT reduction. The electrochemical response of TNT reduction was a quasi-reversible process. The TNT concentration was shown to vary in a linear manner with the current intensity with a detection limit of 0.2 nM. The change in the solution color from colorless to red or deep red was attributed to TNT-amine complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

My manuscript and associated personal data.

References

  1. Vu HT, Le HTV, Pham YTH, Le HQ, Pham PH (2016) Electrochemical detection of TNT by differential pulse adsorptive stripping voltammetry at carbon paste electrode modified by 1-Butyl-3 Methylimidazolium tetrafluoroborate” Bull. Korean Chem. Soc. 37:378–385

    Article  CAS  Google Scholar 

  2. Schuster R, Strehse JS, Ahvo A, Turja R, Maser E, Bickmeyer U, Lehtonen KK, Brenner M (2021) “Exposure to dissolved TNT causes multilevel biological effects in Baltic mussels (Mytilus spp.).” Marine Environmental Research 167:105264. https://doi.org/10.1016/j.marenvres.2021.105264

    Article  CAS  PubMed  Google Scholar 

  3. Al-Traboulsi M, Alaib MA (2023) Phytotoxic effects of soil contaminated with explosive residues of landmines on germination and growth of Vicia faba L. Geol Ecol Landsc 7(3):221–231. https://doi.org/10.1080/24749508.2021.1952765

    Article  Google Scholar 

  4. Milligan K, Shand NC, Graham D, Faulds K (2020) Detection of multiple nitroaromatic explosives via formation of a Janowsky complex and SERS. Anal Chem 92(4):3253–3261. https://doi.org/10.1021/acs.analchem.9b05062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Harathi J, Thenmozhi K (2022) Water-soluble ionic liquid as a fluorescent probe towards distinct binding and detection of 2,4,6- trinitrotoluene and 2,4,6-trinitrophenol in aqueous medium. Chemosphere 286(Part 2):131825. https://doi.org/10.1016/j.chemosphere.2021.131825

    Article  CAS  PubMed  Google Scholar 

  6. Üzer A, Erçağ E, Apak R (2005) Selective spectrophotometric determination of TNT in soil and water with dicyclohexylamine extraction. Analytica Chimica Acta 534:307–317

    Article  Google Scholar 

  7. Adegoke O, Daeid NN (2021) “Colorimetric optical nanosensors for trace explosive detection using metal nanoparticles”: advances, pitfalls, and future perspective, Review Article. Emerg Top Life Sci 5(3):367–379. https://doi.org/10.1042/ETLS20200281

    Article  CAS  PubMed  Google Scholar 

  8. Batlle R, Carlsson H, Holmgren E, Colmsjö A, Crescenzi C (2002) On-line coupling of supercritical fluid extraction with high-performance liquid chromatography for the determination of explosives in vapour phases. J Chromatogr A 963:73–82

    Article  CAS  PubMed  Google Scholar 

  9. Pittman TL, Thomson B, Miao W (2009) Ultrasensitive detection of TNT in soil, water, using enhanced electrogenerated chemiluminescence. Analytica Chimica Acta 632:197–202

    Article  CAS  PubMed  Google Scholar 

  10. Guo CX, Lei Y, Li CM (2011) ” Porphyrin Functionalized Graphene for Sensitive Electrochemical Detection of Ultratrace Explosives”. Electroanalysis 23(4):885–893

    Article  CAS  Google Scholar 

  11. Salaria K, Mehta N, Krishna C, Mehta SK (2021) Electrochemical detection of TNT using CdS nanoparticles via cyclic voltammetry and amperometry. Curr Res Green Sustain Chem 4:100166. https://doi.org/10.1016/j.crgsc.2021.100166

    Article  CAS  Google Scholar 

  12. Zhang HX, Cao AM, Hu JS, Wan LJ, Lee ST (2006) Zhang HX “ Electrochemical Sensor for Detecting Ultratrace Nitroaromatic Compounds Using Mesoporous SiO2-Modified Electrode” Anal. Chem 78:1967–1971

    CAS  Google Scholar 

  13. Shi G, Qu Y, Zhai Y, Liu Y, Sun Z, Yang J (2007) and Jin L ”LBL assembled modified sensor for electrochemical detection of ultratrace explosive nitroaromatic compounds”. Electrochem Commun 9:1719–1724

    Article  CAS  Google Scholar 

  14. Chua CK, Pumera M, Rulíšek L (2012) Reduction pathways of 2, 4, 6-trinitrotoluene: an electrochemical and theoretical study. The Journal of Physical Chemistry C 116(6):4243–4251

    Article  CAS  Google Scholar 

  15. Smith WH, Bard AJJ (1975) Electrochemical Reactions of Organic Compounds in Liquid Ammonia. 11. Nitrobenzene and Nitrosobenzene. Am Chem Soc 97:5203–5210

    Article  CAS  Google Scholar 

  16. Sağlam Ş, Üzer A, Erçağ E, Apak R (2018) Electrochemical Determination of TNT, DNT, RDX, and HMX with Gold Nanoparticles/Poly(Carbazole-Aniline) Film-Modified Glassy Carbon Sensor Electrodes Imprinted for Molecular Recognition of Nitroaromatics and Nitramines. Anal Chem 90(12):7364–7370. https://doi.org/10.1021/acs.analchem.8b00715

    Article  CAS  PubMed  Google Scholar 

  17. Agüi L, Montenegro DV, Sedeno PY, Pingarron JM (2005) ”Rapid voltammetric determination of nitroaromatic explosives at electrochemically activated carbon-fibre electrodes” Anal. and Bioanal. Chem. 382:381–387

    Google Scholar 

  18. Liu Y, Zhou Q, Wu Y, Li S, Sun Y, Sheng X, Zhan Y, Zhao J, Guo J, Zhou B (2021) Sensitive detection of 2,4,6-trinitrotoluene utilizing fluorescent sensor from carbon dots and reusable magnetic core-shell nanomaterial. Talanta 233:122498. https://doi.org/10.1016/j.talanta.2021.122498

  19. Castro SVF, Silva MNT, Tormin TF, Santana MHP., Nossol E, Richter EM, Munoz RAA (2018) Highly-sensitive voltammetric detection of trinitrotoluene on reduced graphene oxide/carbon nanotube nanocomposite sensor. Analytica Chimica Acta 1035:14–21

    Article  CAS  PubMed  Google Scholar 

  20. Zhou H, Wang X, Lin TT, Song J, Tang BZ, Jianwei X (2016) Poly(triphenyl ethene) and poly(tetraphenyl ethene): synthesis, aggregation-induced emission property and application as paper sensors for effective nitro-compounds detection. Polym Chem 7:6309–6317. https://doi.org/10.1039/C6PY01358A

    Article  CAS  Google Scholar 

  21. Zhang Y, Ma Ya, Wang L (2020) Simple copper nanoparticle/polyfurfural film modified electrode for the determination of 2, 4, 6-trinitrotoluene (TNT). Anal Lett 53(16):2671–2684. https://doi.org/10.1080/00032719.2020.1751182

    Article  CAS  Google Scholar 

  22. Engel Y, Elnathan R, Pevzner A, Davidi G, Flaxer E, Patolsky F (2010) Supersensitive Detection of Explosives by Silicon Nanowire Arrays. Angew. Chem. Int. Ed. 49:6830–6835

    Article  CAS  Google Scholar 

  23. Canham L (2014) Handbook of porous silicon. https://doi.org/10.1007/978-3-319-05744-6

  24. Sam S, Chazalviel JN, Gouget-LaemmelOzanam ACF, EtcheberryGabouze AN (2011) Peptide immobilisation on porous silicon surface for metal ions detection. Nanoscale research letters 6(1):412

    Article  PubMed  PubMed Central  Google Scholar 

  25. Yaddaden C, Benamar MA, Gabouze N, Berouaken M, Ayat M (2019) Investigations on mercury ion detection in aqueous solution by triglycine surface activated porous silicon nanowires. Physica E 108:147–152

    Article  CAS  Google Scholar 

  26. Chun Kiang Chua (2012) Martin Pumera, and Lubomír Rulís, “Reduction Pathways of 2,4,6-Trinitrotoluene: An Electrochemical and Theoretical Study.” Phys Chem C 116:4243–4251

    Article  Google Scholar 

  27. Marinović V, Marinović S, Jovanović M, Jovanović J, Štrbac S (2010) The electrochemical reduction of trinitrotoluene on a platinum wire modified by chemisorbed acetonitrile. J Electroanal Chem 648(1):1–7

    Article  Google Scholar 

  28. Zhang J (1972) Electrochemical methods: Fundamental and applications. Electro Anal Chem 331:945–957

    Article  Google Scholar 

  29. Villalobos J, Golnak R, Xi L, Schuck G, Risch M (2020) Reversible and irreversible processes during cyclic voltammetry of an electrodeposited manganese oxide as catalyst for the oxygen evolution reaction. Journal of Physics: Energy 2(3):034009. https://doi.org/10.1088/2515-7655/ab9fe2

    Article  CAS  Google Scholar 

  30. Guziejewski D, Stojanov L, Gulaboski R, Mirceski V (2022) Reversible and Quasireversible Electron Transfer under Conditions of Differential Square-Wave Voltammetry. Phys Chem C 126(12):5584–5591. https://doi.org/10.1021/acs.jpcc.2c01188

    Article  CAS  Google Scholar 

  31. Rhodes Z, Simoska O, Dantanarayana A, Stevenson KJ, Minteer SD (2021) “Using structure-function relationships to understand the mechanism of phenazine-mediated extracellular electron transfer in Escherichia”. coli. iScience 24(9):103033. https://doi.org/10.1002/cem.3314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sun S, Zhang B, Wang J, Li K, Gao Y, Zhang TY (2021) Analytic formulas of peak current in cyclic voltammogram: Machine learning as an alternative way. Chemometric Journal 35(3):e3314. https://doi.org/10.1002/cem.3314

    Article  CAS  Google Scholar 

  33. Chiyindiko E, Langner EHG, Conradie J (2022) Reduction Data Obtained from Cyclic Voltammetry of Benzophenones and Copper-2-Hydroxyphenone Complexes. Data 7:183. https://doi.org/10.3390/data7120183

    Article  Google Scholar 

  34. Siangdee N, Youngvises N (2019) “Smart Sensor Using Cellulose-Based Material for TNT Detection”. In Key Engineering Materials. Trans Tech Publications Ltd 803:124–128

    Google Scholar 

  35. Yang X, Wang J, Su D, Xia Q, Chai F, Wang C, Qu F (2014) Fluorescent detection of TNT and 4-nitrophenol by BSA Au nanoclusters. Dalton Trans 43(26):10057–10063

    Article  CAS  PubMed  Google Scholar 

  36. Chaudhary S, Sonkusre P, Bhasin KK, Sabherwal P, Suri CR (2019) Trace detection of some nitro-explosives using thermal mediated immunochemical defragmented method. Biosens Bioelectron 126:590–595. https://doi.org/10.1016/j.bios.2018.09.043

    Article  CAS  PubMed  Google Scholar 

  37. Hu T, Sang W, Chen K, Gu H, Ni Z, Liu S (2019) Simple and sensitive colorimetric detection of a trace amount of 2, 4, 6-trinitrotoluene (TNT) with QD multilayer-modified microchannel assays. Materials Chemistry Frontiers 3(2):193–198

    Article  CAS  Google Scholar 

  38. Paul M, Tscheuschner G, Herrmann S, Weller MG (2020) Fast detection of 2,4,6-trinitrotoluene (TNT) at ppt level by an immunosensor based on kinetic competition. Biosensors 10:89. https://doi.org/10.3390/bios10080089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lee W, Lee W, Lee W, Lee K (November 2021) Controlling the geometric design of anodic 1D TiO2 nanotubes for the electrochemical reduction of 2,4,6-trinitrotoluene in ambient conditions. J Electroanal Chem 900(1):115717. https://doi.org/10.1016/j.jelechem.2021.115717

    Article  CAS  Google Scholar 

  40. Dettlaff A, Jakóbczyk P, Ficek M, Wilk B, Szala M, Wojtas J, Ossowski T, Bogdanowicz R (2020) Electrochemical determination of nitroaromatic explosives at boron-doped diamond/graphene nanowall electrodes: 2,4,6-trinitrotoluene and 2,4,6 trinitroanisole in liquid effluents. J Hazard Mater 387(5):121672. https://doi.org/10.1016/j.jhazmat.2019.121672

    Article  CAS  PubMed  Google Scholar 

  41. Yew YT (2016) Adriano Ambrosi & Martin Pumera, “nNitroaromatic explosives detection using electrochemically exfoliated grapheme.” Sci Rep 6:33276. https://doi.org/10.1038/srep33276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bratin K, Kissinger PT, Briner R, Bruntlett C (1981) Determination of nitroaromatic, nitramine and nitrate ester explosives by liquid chromatography and reductive electrochemical detection. Anal Chim Acta 130:295–311

    Article  CAS  Google Scholar 

  43. Orlandi M, Brenna D, Harms R, Jost S, Benaglia M (2018) Recent Developments in the Reduction of Aromatic and Aliphatic Nitro Compounds to Amines. Org. Process Res. Dev. 22(4):430–445. https://doi.org/10.1021/acs.oprd.6b00205

    Article  CAS  Google Scholar 

  44. Caygill SJ, Collyer SD, Holmes JL, Davis F, Higson SPJ (2013) Electrochemical detection of TNT at cobalt phthalocyanine mediated screen-printed electrodes and application to detection of airborne vapours. Electroanalysis 25(11):2445–2452

    Article  CAS  Google Scholar 

  45. Filanovsky B, Markovsky B, Bourenko T, Perkas N, Persky R, Gedanken A, Aurbach D (2007) Carbon Electrodes Modified with TiO2/Metal Nanoparticles and Their Application for the Detection of Trinitrotoluene. Adv Fonct Mater 17:1487–1492

    Article  CAS  Google Scholar 

  46. Capperucci A, Tanini D (2022) Synthesis of Nitroarenes by Oxidation of Aryl Amines. Chemistry 4(1):77–97. https://doi.org/10.3390/chemistry4010007

    Article  CAS  Google Scholar 

  47. Wirtanen T, Rodrigo E, Waldvogel SR (2020) Recent advances in the electrochemical reduction of substrates involving N−O bonds. Special Issue: Radical Chemistry and Organic Synthesis 362(11):2088–2101. https://doi.org/10.1002/adsc.202000349

    Article  Google Scholar 

  48. Kang C, Lee J, Silvester DS (2016) Electroreduction of 2, 4, 6-Trinitrotoluene in Room Temperature Ionic Liquids: Evidence of an EC2 Mechanism. The Journal of Physical Chemistry C 120(20):10997–11005

    Article  CAS  Google Scholar 

  49. Forzani ES, Lu DL, Leright MJ, Aguilar AD, Tsow F, Iglesias RA, Zhang Q, Lu J, Li JH, Tao NJA (2009) Hybrid Electrochemical-Colorimetric Sensing Platform for Detection of Explosives. J Am Chimie Soc 131:1390–1391

    Article  CAS  Google Scholar 

  50. Pattaweepaiboon S, Pimpakoon V, Phongzitthiganna N, Sirisaksoontorn W, Jeamjumnunja K, Prasittichai C (2022) Impedimetric detection of 2,4,6-trinitrotoluene using surface-functionalized halloysite nanotubes. RSC Adv 12:17794–17802. https://doi.org/10.1039/D2RA02482A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Alizadeh N, Ghoorchian A (2018) Hybrid Optoelectrochemical Sensor for Superselective Detection of 2,4,6-Trinitrotoluene Based on Electrochemical Reduced Meisenheimer Complex. Anal Chem 90:17

    Article  Google Scholar 

  52. Zhang H, Zhou Q, Mei S, Wang G, Guan R, Liu J, Zhang Z (2011) Zhang, “Instant visual detection of trinitrotoluene particulates on various surfaces by ratiometric fluorescence of dual-emission quantum dots hybrid.” J Am Chem Soc 133:8424–8427

    Article  CAS  PubMed  Google Scholar 

  53. Zhang K, Zhou H, Mei Q, Wang S, Guan G, Liu R, Zhang J, Zhang Z (2011) Instant visual detection of trinitrotoluene particulates on various surfaces by ratiometric fluorescence of dual-emission quantum dots hybrid. J. Am. Chem. Soc. 133:8424–8427

    Article  CAS  PubMed  Google Scholar 

  54. Guan G, Liu R, Minghong Wu, Li Z, Liu B, Wang Z, Gao D, Zhang Z (2009) Protein-building molecular recognition sites by layer-by-layer molecular imprinting on colloidal particles. Analyst 134:1880–1886

    Article  CAS  PubMed  Google Scholar 

  55. Lou Z, Cui Y, Yang M, Chen J (2015) The mechanism of 2,4,6-trinitrotoluene detection with amino acid-capped quantum dots: a density functional theory study. RSC Adv 5:48406–48412. https://doi.org/10.1039/C5RA07088K

    Article  CAS  Google Scholar 

  56. Idros N, Ho MY, Pivnenko M, Qasim MM, Hua X (2015) Colorimetric-based detection of TNT explosives using functionalized silica nanoparticles. Sensors 15(6):12891–12905. https://doi.org/10.3390/s150612891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hughes S, Dasary SSR, Begum S, Williams N, Yu H (2015) Meisenheimer complex between 2,4,6-trinitrotoluene and 3-aminopropyltriethoxysilane and its use for a paper-based sensor. Sens Bio-Sens Res 5:37–41. https://doi.org/10.1016/j.sbsr.2015.06.003

  58. Gao DM, Wang ZY, Liu BH, Ni L, Wu MH, Zhang ZP (2008) Resonance energy transfer-amplifying fluorescence quenching at the surface of silica nanoparticles toward ultrasensitive detection of TNT. Anal Chem 80(22):8545–8553. https://doi.org/10.1021/ac8014356

    Article  CAS  PubMed  Google Scholar 

  59. Xie C, Zhang Z, Wang D, Guan G, Gao D, Liu J (2006) Self-assembly strategy for TNT imprinting of polymer nanowire/nanotube arrays. Anal Chem 78(24):8339–8346. https://doi.org/10.1021/ac0615044

    Article  CAS  PubMed  Google Scholar 

  60. Jiang Y, Zhao H, Zhu N, Lin Y, Yu P, Mao L (2008) A simple assay for direct colorimetric visualization of trinitrotoluene at picomolar levels using gold nanoparticles. Angew Chem Int Ed Engl 47(45):8601–4

    Article  CAS  PubMed  Google Scholar 

  61. Tu R, Liu B, Wang Z, Gao D, Wang F, Fang O, Zhang Z (2008) Amine-capped ZnS-Mn2+ nanocrystals for fluorescence detection of trace TNT explosive. Anal Chem 80(9):3458–3465. https://doi.org/10.1021/ac800060f

  62. Walker NR, Linman MJ, Timmers MM, Dean SL, Burkett CM, Lloyd JA, Keelor JD, Baughman BM, Edmiston PL (2007) “Selective detection of gas-phase TNT by integrated optical waveguide spectrometry using molecularly imprinted sol–gel sensing films.” Anal Chim Acta 593:82

    Article  CAS  PubMed  Google Scholar 

  63. Xie C, Liu B, Wang Z, Gao D, Guan G, Zhang Z (2008) Molecular imprinting at walls of silica nanotubes for TNT recognition. Anal Chem. 80(2):437–43

    Article  CAS  PubMed  Google Scholar 

  64. Latendresse CA, Fernandes SC, You S, Euler WB (2013) Speciation of the products of and establishing the role of water in the reaction of TNT with hydroxide and amines: structure, kinetics, and computational results. J Phys Chem A. 117(44):11167–82

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was realized in collaboration between the Research Center in Technology of Semiconductors (CRTSE) / Directorate of Scientific Research and Technological Development (Algeria) (DGRSDT)., and the Scientific and Technical Police Sub-Directorate/ DPJ / DGSN.

Funding

There are currently no Funding Sources on the list.

Author information

Authors and Affiliations

Authors

Contributions

M. CHOHRA. Conceptualization, Methodology, Visualization, Investigation, Writing—original draft. and C. Yaddaden: Methodolog. Writing. review. editing. Supervision. Validation. and M. Berouaken Resources. Writing. review. editing. Supervision. Validation. and O. Rached. Supervision. and D. Akretche. Visualization. and K. Ayouz. Supervision. and N. Gabouze. Writing. review. editing.

Corresponding author

Correspondence to M. Chohra.

Ethics declarations

The manuscript has not been published.

Conflict of Interest

The authors declare that they have no conflict of interest.

Competing Interest

The authors declare no competing interests.

Consent to Participate

The authors consent to participate.

Consent for Publication

The author’s consent for publication.

Disclosure Statement

The authors declare that they have no conflict of interest.

Research Involving Human Participants and/or Animals

Not applicable' for that section.

Informed Consent

Not applicable' for that section.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chohra, M., Yaddaden, C., Berouaken, M. et al. Electrochemical Detection of 2,4,6-Trinitrotoluene on L-Cysteine-Modified Porous Silicon Electrode in Dimethyl Sulfoxide Solution. Silicon 16, 3111–3120 (2024). https://doi.org/10.1007/s12633-024-02885-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-024-02885-1

Keywords

Navigation