Skip to main content
Log in

An Investigation on the Effect of the Surface Modifications and HNTs Loading on the Cure behaviours, Abrasion Resistance, Mechanical and Morphological Properties of NR/EPDM Nanocomposites

  • Research
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Research was conducted to investigate the modification of natural halloysite nanotubes (HNTs) using amino silanes, namely (γ-aminopropyl) triethoxysilane (APTES) and diethoxydimethyl silane (DMS). The study investigates the influence of modified halloysite nanotubes, specifically APTES-HNTs and DMS-HNTs, on the diverse properties of nanocomposites produced from a blend of natural rubber (NR) and ethylene-propylene-diene monomer (EPDM). The properties examined included cure characteristics, tensile properties, hardness, rebound resilience, and compression set qualities of the NR/EPDM nanocomposites. Swelling and cross-link density measurements, abrasion resistance analysis, and fracture morphology examination using FESEM were also performed to validate the experimental outcomes. Utilizing APTES-HNTs as fillers resulted in noteworthy improvements in multiple attributes such as tensile strength, stress at 100% elongation, abrasion resistance, hardness, tear strength, and curing behavior. Notably, the APTES-HNTs filled nanocomposites demonstrated superior resistance to swelling when compared to both HNTs and DMS-HNTs. The enhanced interaction between the filler and rubber matrix, owing to the increased contact surface area, contributed to advancements in mechanical properties and resistance to swelling. Comparing nanocomposites with a base vulcanizate, the incorporation of 10 parts per hundred rubber (phr) APTES-HNTs led to a 36% reduction in abrasion loss. The research findings indicated that the addition of 8 phr APTES-HNTs could potentially increase tensile strength, elongation at break, and stress at 100% elongation by approximately 112%, 31%, and 66%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Bhowmick AK, Chakraborty B (1989) Bond strength in various rubber-to-rubber joints. Plast Rubber Process Appl 11(2):99–106

    CAS  Google Scholar 

  2. Vishvanathperumal S, Navaneethakrishnan V, Anand G, Gopalakannan S (2020) Evaluation of crosslink density using material constants of ethylene-propylene-Diene monomer/styrene-butadiene rubber with different Nanoclay loading: finite element analysis-simulation and experimental. Adv Sci Eng Med 12(5):632–642

    Article  CAS  Google Scholar 

  3. Theja R, Kilari N, Vishvanathperumal S, Navaneethakrishnan V (2021) Modeling tensile modulus of nanoclay-filled ethylene–propylene–diene monomer/styrene–butadiene rubber using composite theories. J Rubber Res 24(5):847–856

    Article  Google Scholar 

  4. Costa VG, Nunes RCR (1994) Mechanical properties of blends of EPDM with NR-cellulose II system. Eur Polym J 30(9):1025–1028

    Article  CAS  Google Scholar 

  5. Cheremisinoff NP (1992) Spotlight on EPDM elastomers. Polym-Plast Technol Eng 31(7–8):713–744

    Article  CAS  Google Scholar 

  6. Coran AY (1991) Anisotropy of ultimate properties in vulcanizates of EPDM/high-diene-rubber blends. Rubber Chem Technol 64(5):801–812

    Article  CAS  Google Scholar 

  7. Shehata AB, Afifi H, Darwish NA, Mounir A (2006) Evaluation of the effect of polymeric compounds as compatibilizers for NR/EPDM blend. Polym-Plast Technol Eng 45(2):165–170

    Article  CAS  Google Scholar 

  8. Xiao X, Chevali VS, Song P, Yu B, Yang Y, Wang H (2020) Enhanced toughness of PLLA/PCL blends using poly (d-lactide)-poly (ε-caprolactone)-poly (d-lactide) as compatibilizer. Compos Commun 21:100385

    Article  Google Scholar 

  9. Nabil H, Ismail H, Azura AR (2013) Comparison of thermo-oxidative ageing and thermal analysis of carbon black-filled NR/Virgin EPDM and NR/Recycled EPDM blends. Polym Test 32:631–639

    Article  CAS  Google Scholar 

  10. Han T, Nagarajan S, Zhao H, Sun C, Wen S, Zhao S, Zhao S, Zhang L (2020) Novel reinforcement behavior in nanofilled natural rubber (NR)/butadiene-acrylonitrile rubber (NBR) blends: filling-polymer network and supernanosphere. Polymer 186:122005

    Article  CAS  Google Scholar 

  11. Salzano de Luna M, Filippone G (2016) Effects of nanoparticles on the morphology of immiscible polymer blends challenges and opportunities. Eur Polym J 79:198–218

    Article  CAS  Google Scholar 

  12. Krause IC (2000) Polymer-polymer compatibility. In: Paul DR, Bucknall CB (eds) Polymer blends. Wiley, New York, pp 15–30

    Google Scholar 

  13. Ibarra L, Rodríguez A, Mora I (2007) Ionic nanocomposites based on XNBR-OMg filled with layered nanoclays. Eur Polym J 43:753–761

    Article  CAS  Google Scholar 

  14. Sae-oui P, Sirisinha C, Thepsuwan U, Thapthong P (2007) Influence of accelerator type on properties of NR/EPDM blends. Polym Test 26(8):1062–1067

    Article  CAS  Google Scholar 

  15. Botros SH, Tawfic ML (2006) Synthesis and characteristics of MAH-g-EPDM compatibilized EPDM/NBR rubber blends. J Elastomers Plast 38(4):349–365

    Article  CAS  Google Scholar 

  16. Zhang H, Datta RN, Talma AG, Noordermeer JW (2010) Maleic-anhydride grafted EPM as compatibilising agent in NR/BR/EPDM blends. Eur Polym J 46(4):754–766

    Article  CAS  Google Scholar 

  17. Zaharescu T, Meltzer V, Vîlcu R (2000) Thermal properties of EPDM/NR blends. Polym Degrad Stabil 70(3):341–345

    Article  CAS  Google Scholar 

  18. Anancharoenwong E, Marthosa S, Suklueng M, Niyomwas S, Chaiprapat S (2020) Effect of silicon carbide on the properties of natural rubber blends with EPDM rubber. Int J Integr Eng 12(2):234–240

    Article  Google Scholar 

  19. Vishvanathperumal S, Gopalakannan S (2019) Effects of the nanoclay and crosslinking systems on the mechanical properties of ethylene-propylene-diene monomer/styrene butadiene rubber blends nanocomposite. SILICON 11(1):117–135

    Article  CAS  Google Scholar 

  20. Vishvanathperumal S, Anand G (2020) Effect of nanoclay/nanosilica on the mechanical properties, abrasion and swelling resistance of EPDM/SBR composites. SILICON 12(8):1925–1941

    Article  CAS  Google Scholar 

  21. Vishvanathperumal S, Anand G (2021) Effect of nanosilica and crosslinking system on the mechanical properties and swelling resistance of EPDM/SBR nanocomposites with and without TESPT. SILICON 13(10):3473–3497

    Article  CAS  Google Scholar 

  22. Vishvanathperumal S, Anand G (2022) Effect of nanosilica on the mechanical properties, compression set, morphology, abrasion and swelling resistance of sulphur cured EPDM/SBR composites. SILICON 14(7):3523–3534

    Article  CAS  Google Scholar 

  23. Vishvanathperumal S, Gopalakannan S (2016) Reinforcement of ethylene vinyl acetate with carbon black/silica hybrid filler composites. Appl Mech Mater 852:16–22

    Article  Google Scholar 

  24. Thomas S, Stephen R (2010) Rubber nanocomposites: preparation, properties and applications. Wiley, Singapore

    Book  Google Scholar 

  25. Vishvanathperumal S, Navaneethakrishnan V, Gopalakannan S (2018) The effect of Nanoclay and hybrid filler on curing characteristics, mechanical properties and swelling resistance of ethylene-vinyl acetate/styrene butadiene rubber blend composite. J Adv Microsc Res 13(4):469–476

    Article  Google Scholar 

  26. Rezende CA, Bragança FC, Doi TR, Lee LT, Galembeck F, Boué F (2010) Natural rubber-clay nanocomposites: mechanical and structural properties. Polymer 51(16):3644–3652

    Article  CAS  Google Scholar 

  27. Yu Y, Gu Z, Song G, Li P, Li H, Liu W (2011) Structure and properties of organo-montmorillonite/nitrile butadiene rubber nanocomposites prepared from latex dispersions. Appl Clay Sci 52(4):381–385

    Article  CAS  Google Scholar 

  28. Hernández M, del Mar Bernal M, Verdejo R, Ezquerra TA, López-Manchado MA (2012) Overall performance of natural rubber/graphene nanocomposites. Compos Sci Technol 73:40–46

    Article  Google Scholar 

  29. Aravinth V, Gurumoorthi G, Vishvanathperumal S, Navaneethakrishnan V (2023) Effect of modified nanographene oxide on the mechanical and swelling properties of silicone rubber nanocomposites. Polymer Korea 47(3):288–302

    Article  CAS  Google Scholar 

  30. Bauhofer W, Kovacs JZ (2009) A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos Sci Technol 69(10):1486–1498

    Article  CAS  Google Scholar 

  31. Lvov YM, Shchukin DG, Mohwald H, Price RR (2008) Halloysite clay nanotubes for controlled release of protective agents. ACS Nano 2(5):814–820

    Article  CAS  PubMed  Google Scholar 

  32. Shchukin DG, Lamaka SV, Yasakau KA, Zheludkevich ML, Ferreira MGS, Möhwald H (2008) Active anticorrosion coatings with halloysite nanocontainers. J Phys Chem C 112(4):958–964

    Article  CAS  Google Scholar 

  33. Guimaraes L, Enyashin AN, Seifert G, Duarte HA (2010) Structural, electronic, and mechanical properties of single-walled halloysite nanotube models. J Phys Chem C 114(26):11358–11363

    Article  CAS  Google Scholar 

  34. Vergaro V, Abdullayev E, Lvov YM, Zeitoun A, Cingolani R, Rinaldi R, Leporatti S (2010) Cytocompatibility and uptake of halloysite clay nanotubes. Biomacromolecules 11(3):820–826

    Article  CAS  PubMed  Google Scholar 

  35. Bates TF, Hildebrand FA, Swineford A (1950) Morphology and structure of endellite and halloysite. Am Miner 35:463–484

    CAS  Google Scholar 

  36. Du M, Guo B, Jia D (2006) Thermal stability and flame retardant effects of halloysite nanotubes on poly (propylene). Eur Polym J 42:1362–1369

    Article  CAS  Google Scholar 

  37. Ye Y, Chen H, Wu J, Ye L (2007) High impact strength epoxy nanocomposites with natural nanotubes. Polymer 48:6426–6433

    Article  CAS  Google Scholar 

  38. Ning N, Yin Q, Luo F, Zhang Q, Du R, Fu Q (2007) Crystallization behavior and mechanical properties of polypropylene/halloysite composites. Polymer 48:7374–7386

    Article  CAS  Google Scholar 

  39. Poh BT, Ng CC (1998) Effect of silane coupling agents on the Mooney scorch time of silica filled natural rubber compound. Eur Polym J 34:975–979

    Article  CAS  Google Scholar 

  40. Yuan P, Southon PD, Liu Z, Malcolm E, Green R, Hook JM et al (2008) Functionalization of halloysite clay nanotubes by grafting with caminopropyltriethoxysilane. J Phys Chem C 112:15742–15751

    Article  CAS  Google Scholar 

  41. Liu M, Guo B, Du M, Lei Y, Jia D (2008) Natural inorganic nanotubes reinforced epoxy resin nanocomposites. J Polym Res 15:205–212

    Article  CAS  Google Scholar 

  42. Raman VS, Rooj S, Das A, Stockelhuber KW, Simon F, Nando GB, Heinrich G (2013) Reinforcement of solution styrene butadiene rubber by silane functionalized halloysite nanotubes. J Macromol Sci Part A Pure Appl Chem 50:1091–1106

    Article  CAS  Google Scholar 

  43. Alipour A, Naderi G, Bakhshandeh GR, Vali H, Shokoohi S (2011) Elastomer nanocomposites based on NR/EPDM/organoclay: morphology and properties. Int Polym Proc 26(1):48–55

    Article  CAS  Google Scholar 

  44. Arunkumar A, Srinivasan D, Vishvanathperumal S, Navaneethakrishnan V (2023) Effect of HNTs and modified HNTs nanotubes on the mechanical properties and swelling resistance of EPDM/SBR rubber blend nanocomposites. Silicon 15:7647–7667

    Article  CAS  Google Scholar 

  45. Anand G, Vishvanathperumal S (2022) Properties of SBR/NR blend: the effects of carbon black/silica (CB/SiO2) hybrid filler and silane coupling agent. SILICON 14(14):9051–9060

    Article  CAS  Google Scholar 

  46. Vishvanathperumal S, Gopalakannan S (2017) Swelling properties, compression set behavior and abrasion resistance of ethylene-propylene-diene rubber/styrene butadiene rubber blend nanocomposites. Polymer Korea 41(3):433–442

    Article  CAS  Google Scholar 

  47. Senthilvel K, Vishvanathperumal S, Prabu B, John Baruch L (2016) Studies on the morphology, cure characteristics and mechanical properties of acrylonitrile butadiene rubber with hybrid filler (carbon black/silica) composite. Polym Polym Compos 24(7):473–480

    CAS  Google Scholar 

  48. Manoj KC, Kumari P, Rajesh C, Unnikrishnan G (2010) Aromatic liquid transport through filled EPDM/NBR blends. J Polym Res 17:1–9

    Article  CAS  Google Scholar 

  49. Flory PJ, Rehner J (1943) Statistical mechanics of cross-linked polymer networks I. Rubberlike elasticity. J Chem Phys 11:512

    Article  CAS  Google Scholar 

  50. Sujith A, Unnikrishnan G (2006) Molecular sorption by heterogeneous natural rubber/poly(ethylene-co-vinyl acetate) blend systems. J Polym Res 13:171–180

    Article  CAS  Google Scholar 

  51. Tomlal TPC, Jose E, Selvin Thomas P, Thomas S, Joseph K (2010) High-performance nanocomposites based on arcylonitrile-butadiene rubber with fillers of different particle size: mechanical and morphological studies. Polym Compos 31:1515–1524

    Article  Google Scholar 

  52. Abou-Helal MO, El-Sabbagh SH (2005) A study on the compatibility of NR-EPDM blends using electrical and mechanical techniques. J Elastomers Plast 37(4):319–346

    Article  CAS  Google Scholar 

  53. Noriman NZ, Ismail H (2012) Properties of styrene butadiene rubber (SBR)/recycled acrylonitrile butadiene rubber (NBRr) blends: the effects of carbon black/silica (CB/silica) hybrid filler and silane coupling agent, Si69. J Appl Polym Sci 124:19–27

    Article  CAS  Google Scholar 

  54. Sundaravadivel G, Parthasarathy K, Vishvanathperumal S, Navaneethakrishnan V (2023) Effect of complex of resorcinol and hexamethylenetetramine modified halloysite nanotubes (RH-HNTs) on the mechanical and swelling characteristics of NR/EPDM nanocomposites. J Polym Res 30:383

    Article  CAS  Google Scholar 

  55. Sundaravadivel G, Venkataraman SR, Vishvanathperumal S, Navaneethakrishnan V (2023) Influence of APTES modified HNTs on properties of NR/EPDM nanocomposites. SILICON 15:6715–6727

    Article  CAS  Google Scholar 

  56. Berahman R, Raiati M, Mazidi MM, Paran SMR (2016) Preparation and characterization of vulcanized silicone rubber/halloysite nanotube nanocomposites: effect of matrix hardness and HNT content. Mater Des 104:333–345

    Article  CAS  Google Scholar 

  57. Ghaderzadeh S, Esmizadeh E, Vahidifar A, Naderi G, Ghoreishy MHR, Mekonnen TH (2021) Naturally occurring halloysite nanotubes for enhanced durability of natural rubber/ethylene propylene diene monomer rubber vulcanizate. J Vinyl Add Tech 27(4):855–867

    Article  CAS  Google Scholar 

  58. Ismail HA, Ahmad HS (2013) The properties of acrylonitrile-butadiene rubber (NBR) composite with halloysite nanotubes (HNTs) and silica or carbon black. Polym-Plast Technol Eng 52(12):1175–1182

    Article  CAS  Google Scholar 

  59. Pasbakhsh P, Ismail H, Fauzi MNA, Bakar AA (2009) The partial replacement of silica or calcium carbonate by halloysite nanotubes as fillers in ethylene propylene diene monomer composites. J Appl Polym Sci 113(6):3910–3919

    Article  CAS  Google Scholar 

  60. Sundar R, Mohan SK, Vishvanathperumal S (2022) Effect of surface modified halloysite nanotubes (mHNTs) on the mechanical properties and swelling resistance of EPDM/NBR nanocomposites. Polymer Korea 46(6):728–743

    Article  CAS  Google Scholar 

  61. Ganeche PS, Balasubramanian P, Vishvanathperumal S (2022) Halloysite nanotubes (HNTs)-filled ethylene-propylene-diene monomer/styrene-butadiene rubber (EPDM/SBR) composites: mechanical, swelling, and morphological properties. SILICON 14:6611–6620

    Article  CAS  Google Scholar 

  62. Ragupathy K, Prabaharan G, Pragadish N, Vishvanathperumal S (2023) Effect of silica nanoparticles and modified silica nanoparticles on the mechanical and swelling properties of EPDM/SBR blend nanocomposites. Silicon 15:6033–6046

    Article  CAS  Google Scholar 

  63. Das RK, Ragupathy K, Kumar TS, Vishvanathperumal S (2023) Effect of halloysite nanotubes (HNTs) on mechanical properties of EPDM/NBR blend-nanocomposites. Polymer Korea 47(2):221–232

    Article  CAS  Google Scholar 

  64. Prakash PC, Gurumoorthi G, Navaneethakrishnan V, Vishvanathperumal S (2023) Effect of nanographene oxide on the mechanical properties of EPDM/SBR nano-composites. Polymer Korea 47(4):427–439

    Article  CAS  Google Scholar 

  65. Dhanasekar S, Baskar S, Vishvanathperumal S (2023) Halloysite nanotubes effect on cure and mechanical properties of EPDM/NBR nanocomposites. J Inorg Organomet Polym Mater 33:3208–3220

    Article  CAS  Google Scholar 

  66. Govindan K, Ramabalan S, Vishvanathperumal S, Chockalingam S (2023) Influence of halloysite nanotubes on mechanical and swelling properties of silicone rubber compound. J Polym Res 30(8):1–17

    Article  Google Scholar 

  67. Prakash PC, Srinivasan D, Navaneethakrishnan V, Vishvanathperumal S (2023) Effect of modified nanographene oxide loading on the swelling and compression set behavior of EPDM/SBR nano-composites. J Inorg Organomet Polym Mater. https://doi.org/10.1007/s10904-023-02803-9

    Article  Google Scholar 

  68. Aravinth V, Navaneethakrishnan V, Vishvanathperumal S, Gurumoorthi G (2023) Effect of modified nanographene oxide (mGO)/carbon nanotubes (CNTs) hybrid filler on the cure, mechanical and swelling properties of silicone rubber composites. J Inorg Organomet Polym Mater. https://doi.org/10.1007/s10904-023-02818-2

    Article  Google Scholar 

  69. Dhanasekar S, Baskar S, Vishvanathperumal S (2023) Cure characteristics, compression set, swelling behaviors, abrasion resistance and mechanical properties of nanoclay (Cloisite 15A, Cloisite 20A and Cloisite 30B) filler filled EPDM/NBR blend system. J Polym Res 30(10):375

    Article  CAS  Google Scholar 

  70. Dhanasekar S, Theja MR, Baskar S, Vishvanathperumal S (2023) Effects of nanosilica on the mechanical properties and swelling resistance of EPDM/NBR nanocomposites. Polymer Korea 47(5):613–627

    Article  CAS  Google Scholar 

  71. Srinivas J, Jagatheeshwaran MS, Vishvanathperumal S, Anand G (2023) The effect of nanosilica on mechanical and swelling resistance properties of ternary rubber (NR/SBR/NBR) blends nanocomposites with and without bis (triethoxysilylpropyl) tetrasulfane. Silicon. https://doi.org/10.1007/s12633-023-02800-0

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Dr. S. Vishvanathperumal – Experimental work and prepared all figures was done

Mr. J. Vasanthe Roy – Supervise the overall work and Removal of plagiarism from the main manuscript.

Dr. G. Anand, Dr. S. Praveen Kumar & Mr. Ramu K.N – Wrote the main manuscript text.

And then all authors reviewed the main manuscript.

Corresponding author

Correspondence to S. Vishvanathperumal.

Ethics declarations

Ethics Approval

This study was approved by the Department of Mechanical Engineering, SA Engineering College, Chennai, Tamilnadu, India.

Consent to Participate

No human subjects or animals were used in this study.

Consent for Publication

The information within this manuscript is entirely original and has not been previously published or copyrighted. Furthermore, the content presented in this document is not currently being reviewed for publication in any other source.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vishvanathperumal, S., Roy, J.V., Anand, G. et al. An Investigation on the Effect of the Surface Modifications and HNTs Loading on the Cure behaviours, Abrasion Resistance, Mechanical and Morphological Properties of NR/EPDM Nanocomposites. Silicon 16, 2267–2284 (2024). https://doi.org/10.1007/s12633-023-02837-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-023-02837-1

Keywords

Navigation