Skip to main content

Advertisement

Log in

Functionalization of Calcium Silicate/Sodium Calcium Silicate Nanostructures with Chitosan and Chitosan/Glutaraldehyde as Novel Nanocomposites for the Efficient Adsorption of Cd(II) and Cu(II) Ions from Aqueous Solutions

  • Research
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

In this work, calcium silicate/sodium calcium silicate nanostructures were facilely produced by sol–gel method. The sol–gel process involves the transformation of a colloidal solution into a gel and then further processing the gel to form a solid material. After that, the produced nanostructures were functionalized with chitosan and chitosan/glutaraldehyde as novel nanocomposites. In addition, the produced nanostructures and their corresponding nanocomposites were employed for the effective sorption of Cd(II) and Cu(II) ions from aqueous solutions by ion exchange and complexation processes. The maximum adsorption capacity of the produced nanostructures, nanostructures/chitosan, and nanostructures/chitosan/glutaraldehyde samples towards Cd(II) ions is 166.94, 236.97, and 324.68 mg/g, respectively. Besides, the maximum adsorption capacity of the same samples towards Cu(II) ions is 202.84, 287.36, and 348.43 mg/g, respectively. The adsorption of Cd(II) and Cu(II) ions was chemical, spontaneous, exothermic, and best described by the pseudo-second-order kinetic model and the Langmuir equilibrium isotherm. The study found that 9 M HCl effectively removed Cd(II) or Cu(II) ions from the synthesized adsorbents, achieving a desorption efficiency exceeding 99%. Furthermore, the produced adsorbents demonstrated excellent reusability over five consecutive adsorption/desorption cycles for the sorption of Cd(II) and Cu(II) ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  1. Fei Y, Hu YH (2023) Chemosphere Recent progress in removal of heavy metals from wastewater : A comprehensive review. Chemosphere 335:139077. https://doi.org/10.1016/j.chemosphere.2023.139077

    Article  PubMed  CAS  Google Scholar 

  2. He T, Li Q, Lin T et al (2023) Recent progress on highly efficient removal of heavy metals by layered double hydroxides. Chem Eng J 462:142041. https://doi.org/10.1016/j.cej.2023.142041

    Article  CAS  Google Scholar 

  3. Xiao B, Jia J, Wang W et al (2023) Journal of Hazardous Materials Advances A review on magnetic biochar for the removal of heavy metals from contaminated soils : Preparation, application, and microbial response. J Hazard Mater Adv 10:100254. https://doi.org/10.1016/j.hazadv.2023.100254

    Article  CAS  Google Scholar 

  4. Zhang Y, Luo J, Zhang H et al (2022) Science of the Total Environment Synthesis and adsorption performance of three-dimensional gels assembled by carbon nanomaterials for heavy metal removal from water : A review. Sci Total Environ 852:158201. https://doi.org/10.1016/j.scitotenv.2022.158201

    Article  ADS  PubMed  CAS  Google Scholar 

  5. Wu S, Shi W, Li K et al (2022) Recent advances on sustainable bio-based materials for water treatment: Fabrication, modification and application. J Environ Chem Eng 10:108921. https://doi.org/10.1016/j.jece.2022.108921

    Article  CAS  Google Scholar 

  6. Wu S, Shi W, Li K et al (2023) Chitosan-based hollow nanofiber membranes with polyvinylpyrrolidone and polyvinyl alcohol for efficient removal and filtration of organic dyes and heavy metals. Int J Biol Macromol 239:124264. https://doi.org/10.1016/j.ijbiomac.2023.124264

    Article  PubMed  CAS  Google Scholar 

  7. Wu S, Li K, Shi W, Cai J (2022) Chitosan/polyvinylpyrrolidone/polyvinyl alcohol/carbon nanotubes dual layers nanofibrous membrane constructed by electrospinning-electrospray for water purification. Carbohydr Polym 294:119756. https://doi.org/10.1016/j.carbpol.2022.119756

    Article  PubMed  CAS  Google Scholar 

  8. Ayalew ZM, Guo X, Zhang X (2022) Journal of Hazardous Materials Advances Synthesis and application of polyethyleneimine ( PEI ) - based composite / nanocomposite material for heavy metals removal from wastewater : A critical review. J Hazard Mater Adv 8:100158. https://doi.org/10.1016/j.hazadv.2022.100158

    Article  CAS  Google Scholar 

  9. Ali A, Ul S, Haris M et al (2023) Cellulose-based adsorbent materials for water remediation : Harnessing their potential in heavy metals and dyes removal. J Clean Prod 421:138555. https://doi.org/10.1016/j.jclepro.2023.138555

    Article  CAS  Google Scholar 

  10. Shamim MA, Zia H, Zeeshan M et al (2022) Journal of Environmental Chemical Engineering Metal organic frameworks ( MOFs ) as a cutting-edge tool for the selective detection and rapid removal of heavy metal ions from water : Recent progress. J Environ Chem Eng 10:106991. https://doi.org/10.1016/j.jece.2021.106991

    Article  CAS  Google Scholar 

  11. Pandey A, Kalamdhad A, Chandra Y (2023) Environmental Nanotechnology, Monitoring & Management Recent advances of nanocellulose as biobased adsorbent for heavy metal ions removal : A sustainable approach integrating with waste management. Environ Nanotechnology, Monit Manag 20:100791. https://doi.org/10.1016/j.enmm.2023.100791

    Article  CAS  Google Scholar 

  12. Ren Z, Wang L, Li Y et al (2022) Synthesis of zeolites by in-situ conversion of geopolymers and their performance of heavy metal ion removal in wastewater : A review. J Clean Prod 349:131441. https://doi.org/10.1016/j.jclepro.2022.131441

    Article  CAS  Google Scholar 

  13. Mo Z, Shi Q, Zeng H et al (2021) Efficient removal of Cd ( II ) from aqueous environment by potassium permanganate-modified eucalyptus biochar. Biomass Conv Bioref. https://doi.org/10.1007/s13399-021-02079-4

    Article  Google Scholar 

  14. Ossman ME, Mansour MS (2013) Removal of Cd ( II ) ion from wastewater by adsorption onto treated old newspaper : kinetic modeling and isotherm studies. 1–7

  15. Yuan X, Ik S, Seung I et al (2019) Removal of Cu ( II ) ions from aqueous solutions using petroleum coke- derived microporous carbon : investigation of adsorption equilibrium and kinetics. Adsorption 25:1205–1218. https://doi.org/10.1007/s10450-019-00059-9

    Article  CAS  Google Scholar 

  16. Fotsing PN, Woumfo ED, Andrada SM et al (2020) Removal of Cu ( II ) from aqueous solution using a composite made from cocoa cortex and sodium alginate. Environ Sci Pollut. Res 27(8):8451–8466

    Article  CAS  Google Scholar 

  17. Chen Q, Yao Y, Li X et al (2018) Journal of Water Process Engineering Comparison of heavy metal removals from aqueous solutions by chemical precipitation and characteristics of precipitates. J Water Process Eng 26:289–300. https://doi.org/10.1016/j.jwpe.2018.11.003

    Article  Google Scholar 

  18. Skotta A, Jmiai A, Elhayaoui W et al (2023) Journal of the Taiwan Institute of Chemical Engineers Suspended matter and heavy metals ( Cu and Zn ) removal from water by coagulation / flocculation process using a new Bio-flocculant : Lepidium sativum. J Taiwan Inst Chem Eng 145:104792. https://doi.org/10.1016/j.jtice.2023.104792

    Article  CAS  Google Scholar 

  19. Abdelrahman EA, Khalil MMH, Algethami FK et al (2023) Facile Synthesis of MgO/CuO and MgO/Cu3MgO4 Binary Nanocomposites as Promising Adsorbents for the Disposal of Zn(II) Ions. J Inorg Organomet Polym Mater. https://doi.org/10.1007/s10904-023-02826-2

    Article  Google Scholar 

  20. Yu Y, Zhong Y, Sun W et al (2023) Chemosphere A novel electrocoagulation process \with centrifugal electrodes for wastewater treatment : Electrochemical behavior of anode and kinetics of heavy metal removal. Chemosphere. 310:136862. https://doi.org/10.1016/j.chemosphere.2022.136862

    Article  PubMed  CAS  Google Scholar 

  21. Pezeshki H, Hashemi M, Rajabi S (2023) Heliyon Removal of arsenic as a potentially toxic element from drinking water by filtration : A mini review of nanofiltration and reverse osmosis techniques. Heliyon 9:e14246. https://doi.org/10.1016/j.heliyon.2023.e14246

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Yu F, Du Y, Guo M et al (2023) Application of biosurfactant surfactin for the removal of heavy metals from contaminated water and soil via a micellar-enhanced ultrafiltration process. Sep Purif Technol 327:124947. https://doi.org/10.1016/j.seppur.2023.124947

    Article  CAS  Google Scholar 

  23. Abdelrahman EA, Algethami FK, Alsalem HS, Binkadem MS (2023) Facile Synthesis and Characterization of Novel Nanostructures for the Efficient Disposal of Crystal Violet Dye from. Inorganics. 11(8):339

    Article  CAS  Google Scholar 

  24. Abdelrahman EA, El-reash YGA, Youssef HM et al (2021) Utilization of rice husk and waste aluminum cans for the synthesis of some nanosized zeolite, zeolite / zeolite, and geopolymer / zeolite products for the efficient removal of Co ( II ), Cu ( II ), and Zn ( II ) ions from aqueous media. J Hazard Mater 401:123813. https://doi.org/10.1016/j.jhazmat.2020.123813

    Article  PubMed  CAS  Google Scholar 

  25. Al-Wasidi AS, Basha MT, Alghanmi RM, et al (2023) Functionalization of Sodium Magnesium Silicate Hydroxide/Sodium Magnesium Silicate Hydrate Nanostructures Using 2,3-Dihydroxybenzaldehyde as a Novel Nanocomposite for the Efficient Removal of Cd(II) and Cu(II) Ions from Aqueous Media. Separations 10:. https://doi.org/10.3390/separations10020088

  26. Almutairi MA, Algethami FK, Youssef HM (2020) Facile fabrication of novel analcime / sodium aluminum silicate hydrate and zeolite Y / faujasite mesoporous nanocomposites for efficient removal of Cu ( II ) and Pb ( II ) ions from aqueous media. Integr Med Res 9:7900–7914. https://doi.org/10.1016/j.jmrt.2020.05.052

    Article  CAS  Google Scholar 

  27. Al-wasidi AS, Naglah AM, Saad FA, Abdelrahman EA (2022) Modification of sodium aluminum silicate hydrate by thioglycolic acid as a new composite capable of removing and preconcentrating Pb ( II ), Cu ( II ), and Zn ( II ) ions from food and water samples. Arab J Chem 15:104178. https://doi.org/10.1016/j.arabjc.2022.104178

    Article  CAS  Google Scholar 

  28. Shao Z, Shen D, Fan F et al (2023) International Journal of Biological Macromolecules Facile synthesis of chitosan-tartaric acid biosorbents for removal of Cu ( II ) and Cd ( II ) from water and tea beverages. Int J Biol Macromol 241:124533. https://doi.org/10.1016/j.ijbiomac.2023.124533

    Article  PubMed  CAS  Google Scholar 

  29. Nguyen H, Lin C, Chao H (2018) Separation and Puri fi cation Technology Amino acids-intercalated Mg / Al layered double hydroxides as dual- electronic adsorbent for e ff ective removal of cationic and oxyanionic metal ions. Sep Purif Technol 192:36–45. https://doi.org/10.1016/j.seppur.2017.09.060

    Article  CAS  Google Scholar 

  30. Zeng L, Chen Y, Zhang Q et al (2015) Adsorption of Cd ( II ), Cu ( II ) and Ni ( II ) ions by cross-linking chitosan / rectorite nano-hybrid composite microspheres. Carbohydr Polym 130:333–343. https://doi.org/10.1016/j.carbpol.2015.05.015

    Article  PubMed  CAS  Google Scholar 

  31. Zhao J, Liu J, Li N et al (2016) Highly efficient removal of bivalent heavy metals from aqueous systems by magnetic porous Fe 3 O 4 -MnO 2: Adsorption behavior and process study. Chem Eng J 304:737–746. https://doi.org/10.1016/j.cej.2016.07.003

    Article  CAS  Google Scholar 

  32. Sahebjamee N, Soltanieh M, Mahmoud S, Heydarinasab A (2019) Removal of Cu 2 +, Cd 2 + and Ni 2 + ions from aqueous solution using a novel chitosan / polyvinyl alcohol adsorptive membrane. Carbohydr Polym 210:264–273. https://doi.org/10.1016/j.carbpol.2019.01.074

    Article  PubMed  CAS  Google Scholar 

  33. Chen Y, Zhao W, Zhao H et al (2020) Efficient removal of Pb ( II ), Cd ( II ), Cu ( II ) and Ni ( II ) from aqueous solutions by tetrazole-bonded bagasse. Chem Phys 529:110550. https://doi.org/10.1016/j.chemphys.2019.110550

    Article  CAS  Google Scholar 

  34. Joseph IV, Tosheva L, Doyle AM (2020) Journal of Environmental Chemical Engineering Simultaneous removal of Cd ( II ), Co ( II ), Cu ( II ), Pb ( II ), and Zn ( II ) ions from aqueous solutions via adsorption on FAU-type zeolites prepared from coal fl y ash. J Environ Chem Eng 8:103895. https://doi.org/10.1016/j.jece.2020.103895

    Article  CAS  Google Scholar 

  35. Jain M, Yadav M, Kohout T et al (2018) Development of iron oxide / activated carbon nanoparticle composite for the removal of Cr ( VI ), Cu ( II ) and Cd ( II ) ions from aqueous solution. Water Resour Ind 20:54–74. https://doi.org/10.1016/j.wri.2018.10.001

    Article  Google Scholar 

  36. Li M, Li M, Feng C, Zeng Q (2014) Applied Surface Science Preparation and characterization of multi-carboxyl-functionalized silica gel for removal of Cu ( II ), Cd ( II ), Ni ( II ) and Zn ( II ) from aqueous solution. Appl Surf Sci 314:1063–1069. https://doi.org/10.1016/j.apsusc.2014.06.038

    Article  ADS  CAS  Google Scholar 

  37. Barsbay M, Tilki S, Kavakl C, Güven O (2018) Porous cellulosic adsorbent for the removal of Cd ( II ), Pb ( II ) and Cu ( II ) ions from aqueous media. Rad Phys Chem. 142:70–76. https://doi.org/10.1016/j.radphyschem.2017.03.037

    Article  ADS  CAS  Google Scholar 

  38. Okieimen FE, Sogbaike CE, Ebhoaye JE (2005) Removal of cadmium and copper ions from aqueous solution with cellulose graft copolymers. Sep Purif Technol 44:85–89. https://doi.org/10.1016/j.seppur.2004.11.003

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported and funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University (IMSIU) (grant number IMSIU-RP23010).

Funding

This work was supported and funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University (IMSIU) (grant number IMSIU-RP23010).

Author information

Authors and Affiliations

Authors

Contributions

Khaled Shafeeq (Experimental, Writing), Samir M. El Rayes (Conceptualization, Review), Mostafa M.H. Khalil (Conceptualization, Experimental, Writing, Analysis), Reem K. Shah (Preparing figures, Writing the Experimental), Fawaz A. Saad (Preparing tables), Mohamed Khairy (Experimental), Faisal K. Algethami (Review), Ehab A. Abdelrahman (Conceptualization, Experimental, Writing, Review).

Corresponding author

Correspondence to Ehab A. Abdelrahman.

Ethics declarations

Ethical Approval

Authors approve that the submitted work is original and has not been published elsewhere in any form or language (partially or in full).

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shafeeq, K., Rayes, S.M.E., Khalil, M.M.H. et al. Functionalization of Calcium Silicate/Sodium Calcium Silicate Nanostructures with Chitosan and Chitosan/Glutaraldehyde as Novel Nanocomposites for the Efficient Adsorption of Cd(II) and Cu(II) Ions from Aqueous Solutions. Silicon 16, 1713–1730 (2024). https://doi.org/10.1007/s12633-023-02793-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-023-02793-w

Keywords

Navigation