Skip to main content
Log in

Potassium Silicate Positively Affects Oil Content, Physiologic, and Agronomic Traits of Camelina sativa L. Under Optimal Water Supply and Drought Stress Conditions

  • Research
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

A factorial experiment was arranged in a randomized complete blocks design with three replicates in 2018–19 and 2019–20 growing seasons in Karaj, Iran to investigate the effects of foliar application of different potassium silicate concentrations (0, 1, 2, 3 g L−1) on camelina plants under different irrigation regimes (optimal water supply, withholding irrigation from formation of silicles, and withholding irrigation from flowering). The results indicated that both restricted irrigation regimes negatively affected the physiologic (relative water content, stomatal resistance, canopy temperature, and total chlorophyll content) and agronomic (number of silicle per plant, number of seed per silicle, 1000-seed weight, seed yield, and water use efficiency) traits as well as oil content, while the potassium silicate alleviated the adverse effects of drought stress on studied traits. The highest camelina seed yield (2521 kg ha−1), water use efficiency (0.492 kg ha−1 m−3), and oil content (33.53%) belonged to foliar application of 2 g L−1 under optimal water supply regime. On average across potassium silicate treatments, reductions of 45 and 64%, 27 and 28%, and 6 and 11% were detected for seed yield, water use efficiency, and oil content when irrigation was restricted from silicle formation and flowering stages compared with the optimal water supply regime, respectively. Overall, the foliar application of 2 g potassium silicate L−1 under an optimal water supply regime and 3 g potassium silicate L−1 under drought stress conditions can be recommended to achieve the best performance of camelina.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The data that support this study cannot be publicly shared due to ethical or privacy reasons and may be shared upon reasonable request to the corresponding author if appropriate.

References

  1. Qadir M, Smakhtin V, Koo-Oshima S, Guenther E (2022) unconventional water resources. Springer, Cham

    Book  Google Scholar 

  2. Cao X, Bao Y, Li Y, Li J, Wu M (2023) Unravelling the effects of crop blue, green and grey virtual water flows on regional agricultural water footprint and scarcity. Agric Water Manag 278:108165. https://doi.org/10.1016/j.agwat.2023.108165

    Article  Google Scholar 

  3. Kalantar Ahmadi SA, Eyni-Nargeseh H (2023) Foliar application of growth regulators mitigates harmful effects of drought stress and improves seed yield and oil quality of rapeseed (Brassica napus L.). Gesunde Pflanz. https://doi.org/10.1007/s10343-023-00907-3

    Article  Google Scholar 

  4. Modarres R, da Silva VDPR (2007) Rainfall trends in arid and semi-arid regions of Iran. J Arid Environ 70(2):344–355

    Article  Google Scholar 

  5. Codina-Pascual N, Torra J, Baraibar B, Royo-Esnal A (2022) Weed suppression capacity of camelina (Camelina sativa) against winter weeds: The example of corn-poppy (Papaver rhoeas). Ind Crops Prod 184:115063

    Article  Google Scholar 

  6. Haldane JB (1990) The causes of evolution, vol 5. Princeton University Press, Princeton

    Google Scholar 

  7. Moser BR (2010) Camelina (Camelina sativa L.) oil as a biofuels feedstock: golden opportunity or false hope? Lipid Tech 22(12):270–273

    Article  CAS  Google Scholar 

  8. George N, Thompson SE, Hollingsworth J, Orloff S, Kaffka S (2018) Measurement and simulation of water-use by canola and camelina under cool-season conditions in California. Agric Water Manag 196:15–23

    Article  Google Scholar 

  9. Gao L, Caldwell CD, Jiang Y (2018) Photosynthesis and growth of camelina and canola in response to water deficit and applied nitrogen. Crop Sci 58(1):393–401. https://doi.org/10.2135/cropsci2017.07.0406

    Article  CAS  Google Scholar 

  10. Eyni-Nargeseh H, Shirani Rad AH, Shiranirad S (2022) Does potassium silicate improve physiologic and agronomic traits and oil compositions of rapeseed genotypes under well-watered and water-limited conditions? Gesunde Pflanz 74:801. https://doi.org/10.1007/s10343-022-00652-z

    Article  CAS  Google Scholar 

  11. Bukhari MA, Yousaf M, Ahmad Z, Rafay M, Shah AN, Abbas A, Shah AA, Javed T, Afzal M, Ali S, Abdullah MI (2022) Enhancing drought stress tolerance in Camelina (Camelina sativa L.) through exogenous application of potassium. Physiol Plant 174(5):e13779. https://doi.org/10.1111/ppl.13779

    Article  CAS  PubMed  Google Scholar 

  12. Shiranirad S, Eyni-Nargeseh H, Shirani Rad AH, Malmir M (2023) Managing irrigation and sowing date can improve oil content and fatty acid composition of Camelina sativa L. Arch Agron Soil Sci. https://doi.org/10.1080/03650340.2023.2177989

    Article  Google Scholar 

  13. Reynolds MP, Slafer GA, Foulkes JM, Griffiths S, Murchie EH, Carmo-Silva E, Asseng S, Chapman SC, Sawkins M, Gwyn J, Flavell RB (2022) A wiring diagram to integrate physiological traits of wheat yield potential. Nature Food 3(5):318–324. https://doi.org/10.1038/s43016-022-00512-z

    Article  PubMed  Google Scholar 

  14. Zhai L, Wang Z, Song S, Zhang L, Zhang Z, Jia X (2021) Tillage practices affects the grain filling of inferior kernel of summer maize by regulating soil water content and photosynthetic capacity. Agric Water Manag 245:106600. https://doi.org/10.1016/j.agwat.2020.106600

    Article  Google Scholar 

  15. Ahmed Z, Liu J, Waraich EA, Yan Y et al (2020) Differential physio-biochemical and yield responses of Camelina sativa L. under varying irrigation water regimes in semi-arid climatic conditions. PLOS ONE 15(12):e0242441. https://doi.org/10.1371/journal.pone.0242441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shirani Rad AH, Malmir M, Eyni-Nargeseh H (2023) Appropriate irrigation regime and sowing date boost camelina seed yield and oil content by improving physiologic and agronomic trait. Russ J Plant Physiol 70:108. https://doi.org/10.1134/S1021443723600095

    Article  CAS  Google Scholar 

  17. Martinez-Vilalta J, Anderegg WR, Sapes G, Sala A (2019) Greater focus on water pools may improve our ability to understand and anticipate drought-induced mortality in plants. New Phytol 223(1):22–32. https://doi.org/10.1111/nph.15644

    Article  PubMed  Google Scholar 

  18. Borzoo S, Mohsenzadeh S, Moradshahi A, Kahrizi D, Zamani H, Zarei M (2021) Characterization of physiologic responses and fatty acid compositions of Camelina sativa genotypes under water deficit stress and symbiosis with Micrococcus yunnanensis. Symbiosis 83(1):79–90. https://doi.org/10.1007/s13199-020-00733-5

    Article  CAS  Google Scholar 

  19. Wang C, Yang J, Chen W, Zhao X, Wang Z (2023) Contribution of the leaf and silique photosynthesis to the seeds yield and quality of oilseed rape (Brassica napus L.) in reproductive stage. Sci Rep 13(1):4721

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nisar M, Aqeel M, Sattar A, Shehr A, Ijaz M, Ul-Allah S, Rasheed U, Al-Qahtani SM, Al-Harbi NA, Alzuaibr FM, Ibrahim F (2023) Exogenous application of silicon and sulfate improved drought tolerance in sunflowers through modulation of morpho-physiological and antioxidant defense mechanisms. J Soil Sci Plant Nutr. https://doi.org/10.1007/s42729-023-01396-z

    Article  Google Scholar 

  21. Kandil EE, Abdelsalam NR, Aziz AAAE, Ali HM, Siddiqui MH (2020) Efficacy of nanofertilizer, fulvic acid and boron fertilizer on sugar beet (Beta vulgaris L.) yield and quality. Sugar Tech 22:782–791

    Article  CAS  Google Scholar 

  22. Gomaa MA, Kandil EE, El-Dein AA, Abou-Donia ME, Ali HM, Abdelsalam NR (2021) Increase maize productivity and water use efficiency through application of potassium silicate under water stress. Sci Rep 11(1):1–8

    Article  Google Scholar 

  23. Steudle E (2000) Water uptake by roots: effects of water deficit. J Exp Bot 51(350):1531–1542

    Article  CAS  PubMed  Google Scholar 

  24. Zhu Y, Gong H (2014) Beneficial effects of silicon on salt and drought tolerance in plants. Agron sustain Dev 34:455–472. https://doi.org/10.1007/s13593-013-0194-1

    Article  CAS  Google Scholar 

  25. Wang M, Wang R, Mur LAJ, Ruan J, Shen Q, Guo S (2021) Functions of silicon in plant drought stress responses. Hortic Res 8:254. https://doi.org/10.1038/s41438-021-00681-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shirani Rad AH, Eyni-Nargeseh H, Shiranirad S, Heydarzadeh A (2022) Effect of potassium silicate on seed yield and fatty acid composition of rapeseed (Brassica napus L.) genotypes under different irrigation regimes. SILICON 14:11927–11938. https://doi.org/10.1007/s12633-022-01915-0

    Article  CAS  Google Scholar 

  27. Karvar M, Azari A, Rahimi A, Maddah-Hosseini S, Ahmadi-Lahijani MJ (2023) Potassium silicate reduces water consumption, improves drought tolerance, and enhances the productivity of sweet corn (Zea mays) under deficit irrigation. Acta Physiol Plant 45:38. https://doi.org/10.1007/s11738-022-03510-7

    Article  CAS  Google Scholar 

  28. Saudy HS, Salem EM, Abd El-Momen WR (2023) Effect of potassium silicate and irrigation on grain nutrient uptake and water use efficiency of wheat under calcareous soils. Gesunde Pflanz 75(3):647–654. https://doi.org/10.1007/s10343-022-00729-9

    Article  CAS  Google Scholar 

  29. Dhopte AM, Manuel LM (2002) Principles and techniques for plant scientists, 1st end. Updesh Purohit for Agrobios (India), Odhpur 81, pp 373

  30. Arnon AN (1967) Method of extraction of chlorophyll in the plants. Agron J 23:112–121

    Google Scholar 

  31. Bates LS, Waldern RP, Teave ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  32. Dubois D, Gilleres KA, Hamilton JK (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  33. Kalantar Ahmadi SA, Ebadi A, Jahanbakhsh S, Daneshian J, Siadat SA (2015) Changes in enzymatic and nonenzymatic antioxidant defense mechanisms of canola seedlings at different drought stress and nitrogen levels. Turk J Agric For 39(5):601–612. https://doi.org/10.3906/tar-1404-140

    Article  CAS  Google Scholar 

  34. Harrison EL, Arce Cubas L, Gray JE, Hepworth C (2020) The influence of stomatal morphology and distribution on photosynthetic gas exchange. Plant J 101(4):768–779. https://doi.org/10.1111/tpj.14560

    Article  CAS  PubMed  Google Scholar 

  35. Kumar A, Nayak AK, Das BS, Panigrahi N, Dasgupta P, Mohanty S, Kumar U, Panneerselvam P, Pathak H (2019) Effects of water deficit stress on agronomic and physiologic responses of rice and greenhouse gas emission from rice soil under elevated atmospheric CO2. Sci Total Environ 650:2032–2050. https://doi.org/10.1016/j.scitotenv.2018.09.332

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Keshavarz H (2020) Study of water deficit conditions and beneficial microbes on the oil quality and agronomic traits of canola (Brassica napus L.). Grasas Aceites 71(3):373. https://doi.org/10.3989/gya.0572191

    Article  CAS  Google Scholar 

  37. Patanè C, Cosentino SL, Romano D, Toscano S (2022) Relative water content, proline, and antioxidant enzymes in leaves of long shelf-life tomatoes under drought stress and rewatering. Plants 11:3045

    Article  PubMed  PubMed Central  Google Scholar 

  38. Osama S, El Sherei M, Al-Mahdy DA, Bishr M, Salama O (2019) Effect of Salicylic acid foliar spraying on growth parameters, γ-pyrones, phenolic content and radical scavenging activity of drought stressed Ammi visnaga L. plant. Ind Crops Prod 134:1–10. https://doi.org/10.1016/j.indcrop.2019.03.035

    Article  CAS  Google Scholar 

  39. Sevanto S (2018) Drought impacts on phloem transport. Curr Opin Plant Biol 43:76–81. https://doi.org/10.1016/j.pbi.2018.01.002

    Article  PubMed  Google Scholar 

  40. RanjbarFordoei A, DehghaniBidgholi R (2016) Impact of salinity stress on photochemical efficiency of photosystem II, chlorophyll content and nutrient elements of nitere bush (Nitraria schoberi L.) plants. J Rangel Sci 6(1):3–9

    Google Scholar 

  41. Xiang DB, Peng LX, Zhao JL, Zou L, Zhao G, Song Ch (2013) Effect of drought stress on yield, chlorophyll contents and photosynthesis in tartary buckwheat (Fagopyrum tataricum). J Food Agric Environ 11(3 and 4):1358–1363

    CAS  Google Scholar 

  42. Cakmak I (2005) K alleviates detrimental effects of abiotic stresses in plants. J Plant Nutr Soil Sci 168(4):521–530. https://doi.org/10.1002/jpln.200420485

    Article  CAS  Google Scholar 

  43. Gao X, Zou C, Wang L, Zhang F (2006) Silicon decreases transpiration rate and conductance from stomata of maize plants. J Plant Nutr 29:1637–1647

    Article  CAS  Google Scholar 

  44. Habibi G (2014) Silicon supplementation improves drought tolerance in canola plants. Russ J Plant Physiol 61(6):784–791. https://doi.org/10.1134/S1021443714060077

    Article  CAS  Google Scholar 

  45. Gao M, Zhou J, Liu H, Zhang W, Hu Y, Liang J, Zhou J (2018) Foliar spraying with silicon and selenium reduces cadmium uptake and mitigates cadmium toxicity in rice. Sci Total Environ 631:1100–1108. https://doi.org/10.1016/j.scitotenv.2018.03.047

    Article  ADS  CAS  PubMed  Google Scholar 

  46. Jang SW, Sadiq NB, Hamayun M, Jung J, Lee T, Yang JS, Lee B, Kim HY (2020) Silicon foliage spraying improves growth characteristics, morphological traits, and root quality of Panax ginseng C.A.Mey. Ind Crops Prod 156:112848. https://doi.org/10.1016/j.indcrop.2020.112848

    Article  CAS  Google Scholar 

  47. Diepenbrock W (2000) Yield analysis of winter oilseed rape: a review. Field Crops Res 67:35–49. https://doi.org/10.1016/S0378-4290(00)00082-4

    Article  Google Scholar 

  48. Artyszak A (2018) Effect of silicon fertilization on crop yield quantity and quality—a literature review in Europe. Plants 7:54. https://doi.org/10.3390/plants7030054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Li Z, Song Z, Yan Z, Hao Q, Song A, Liu L, Yang X, Xia S, Liang Y (2018) Silicon enhancement of estimated plant biomass carbon accumulation under abiotic and biotic stresses. A meta-analysis. Agron sustain Dev 38:26. https://doi.org/10.1007/s13593-018-0496-4

    Article  Google Scholar 

  50. Mokhtassi-Bidgoli A, AghaAlikhani M, Eyni-Nargeseh H (2022) Effects of nitrogen and water on nutrient uptake, oil productivity, and composition of Descurainia sophia. J Soil Sci Plant Nutr 22:59–70. https://doi.org/10.1007/s42729-021-00633-7

    Article  CAS  Google Scholar 

  51. Singh S, Sinha S (2005) Accumulation of metals and its effects in Brassica juncea (L.) Czern. (cv. Rohini) grown on various amendments of tannery waste. Ecotoxicol Environ Safe 62:118–127. https://doi.org/10.1016/j.ecoenv.2004.12.026

    Article  CAS  Google Scholar 

  52. Elferjani R, Soolanayakanahally R (2018) Canola responses to drought, heat, and combined stress: shared and specific effects on carbon assimilation, seed yield, and oil composition. Front Plant Sci 9:1224. https://doi.org/10.3389/fpls.2018.0122453

    Article  PubMed  PubMed Central  Google Scholar 

  53. Dar JS, Cheema MA, Rehmani MIA, Khuhro S, Rajput S, Virk AL et al (2021) Potassium fertilization improves growth, yield and seed quality of sunflower (Helianthus annuus L.) under drought stress at different growth stages. PLoS ONE 16(9):e0256075. https://doi.org/10.1371/journal.pone.0256075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Liang Y, Zhang W, Chen Q, Ding R (2005) Effects of silicon on H+-ATPase and H+-PPase activity, fatty acid composition and fluidity of tonoplast vesicles from roots of salt-stressed barley (Hordeum vulgare L.). Environ Exp Bot 53:29–37. https://doi.org/10.1016/j.envexpbot.2004.02.010

    Article  CAS  Google Scholar 

  55. Hasanuzzaman M, Bhuyan MHMB, Nahar K, Hossain MS, Mahmud JA, Hossen MS, Masud AAC, Moumita Fujita M (2018) Potassium: a vital regulator of plant responses and tolerance to abiotic stresses. Agronomy 8(3):31. https://doi.org/10.3390/agronomy8030031

    Article  CAS  Google Scholar 

  56. Agarie S, Hanaoka N, Ueno O, Miyazaki A, Kubota F, Agata W, Kaufman PB (1998) Effects of silicon on tolerance to water deficit and heat stress in rice plants (Oryza sativa L.), monitored by electrolyte leakage. Plant Prod Sci 1:96–103. https://doi.org/10.1626/pps.1.96

    Article  Google Scholar 

  57. Wang M, Zheng Q, Shen Q, Guo Sh (2013) The critical role of potassium in plant stress response. Int J Mol Sci 14:7370–7390. https://doi.org/10.3390/ijms14047370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zadegan K, Monem R, Pazoki A (2023) Silicon dioxide nanoparticles improved yield, biochemical attributes, and fatty acid profile of cowpea (Vigna unguiculata [L.] Walp) under different irrigation regimes. J Soil Sci Plant Nutr 23:3197–3208. https://doi.org/10.1007/s42729-023-01297-1

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support provided for this survey by the Seed and Plant Improvement Institute (SPII), Karaj, Iran.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Amir Hosein Shirani Rad: Conceptualization, Methodology, Project administration, Writing- Original draft preparation, Mohammad Malmir: Software, Formal analysis, Writing- Original draft preparation, Hamed Eyni-Nargeseh: Software, Formal analysis, Writing- Original draft preparation.

Corresponding authors

Correspondence to Amir Hosein Shirani Rad or Hamed Eyni-Nargeseh.

Ethics declarations

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rad, A.H.S., Malmir, M. & Eyni-Nargeseh, H. Potassium Silicate Positively Affects Oil Content, Physiologic, and Agronomic Traits of Camelina sativa L. Under Optimal Water Supply and Drought Stress Conditions. Silicon 16, 1071–1082 (2024). https://doi.org/10.1007/s12633-023-02741-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-023-02741-8

Keywords

Navigation