Skip to main content
Log in

Lindemann’s Role of Melting, Debye Temperature, Dimensionless Mass and Bond Energies for Si-based Tetrahedral Compound Semiconductors

  • Research
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

An approach is made to calculate and analyze the combination of Lindemann’s role for melting and Debye temperature \(\left({\uptheta }_{D}\right)\) with that of lattice structure to examine ionicity and the structure factor for elements and compounds forming IV, III-V, II-VI, II-IV-V2 and I-III-VI2 tetrahedral group semiconductors. The results were found to have a direct relation of Lindemann’s ratio \(\left(f\right)\) with the mean bond length \({d}_{mean}\) of these materials in the form of \(\mathrm{f}=0.214{d}_{mean}^{-1}\left(1+{f}_{i}\right)\), where \({f}_{i}\) is the group compound ionicity, which is zero, 0.19 and 0.63 for IV, III-V and II-VI, respectively. Similar relations were found for the material dimensionless mass and material structure factor. The obtained relations had a systematic application for calculating values of both \(\mathrm{f}\) and \({\uptheta }_{D}\) for all elements and compounds forming the above groups and those from ternary chalcopyrite compounds from II-IV-V2 and I-III-V2. Lindemann’s ratio of melting \(\mathrm{f}\) for the above groups found to be in the range between 0.077 for Sn and 0.199 for CdS. Bond energies are used to explain both the dimensionless mass and Lindemann’s ratio of melting in group IV semiconductors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Cho SA (1978) Thermal vibration amplitude of atoms and fusion behavior of metals. J Korean Inst Met 16:278–285. https://doi.org/10.1007/978-94-011-9954-7_2

  2. Omar MS, Abdullah BJ, Karim AS, Jalal S K (2023) Specific heat and its related parameters in Si nanoparticles. Silicon:1–9. https://doi.org/10.1007/s12633-023-02316-7

  3. Lawson AC, Artinez BM, Roberts JA, Bennett BI, Richardson JW (2000) Melting of the light actinides. Philos Mag B 80:53–59. https://doi.org/10.1080/13642810008218339

    Article  CAS  Google Scholar 

  4. Strauch D, Pavone P, Nerb N, Karch K, Windl W, Dalba G, Fornasini P (1996) Atomic thermal vibrations in semiconductors: Ab initio calculations and EXAFS measurements. Phys B Condens Matter 218:379–381. https://doi.org/10.1016/0921-4526(95)00770-9

    Article  Google Scholar 

  5. Schowalter M, Rosenauer A, Titantah JT, Lamoen D (2009) Computation and parametrization of the temperature dependence of Debye-Waller factors for group IV, III–V and II–VI semiconductors. Acta Crystallogr A 65:5–17. https://doi.org/10.1107/s0108767308031437

    Article  CAS  PubMed  Google Scholar 

  6. Lindemann FA (1910) Über die Berechnung molekularer Eigenfrequenzen. Phys Z 11:609–612

    CAS  Google Scholar 

  7. Soma T, Matsuo H (1982) Lindeman’s melting law and the effect of pressure on the melting point of Si and Ge. Phys Status Solidi B 109:387–391. https://doi.org/10.1002/pssb.2221090142

    Article  CAS  Google Scholar 

  8. Kawai N, Inokuti Y (1968) Low temperature melting of elements under high pressure and its progression in the periodic table. Jpn J Appl Phys 7:989. https://doi.org/10.1143/jjap.7.989

    Article  CAS  Google Scholar 

  9. Gilvarry JJ (1956) The Lindemann and Grüneisen Laws. Phys Rev 102:308–316. https://doi.org/10.1103/physrev.102.308

    Article  CAS  Google Scholar 

  10. Kagaya HM (1986) Temperature dependence of specific heat and Debye temperature of tetrahedral compounds. Physics Status Solidi (b):K101–K104. https://inis.iaea.org/search/search.aspx?orig_q=RN:17061473

  11. Lawson AC (2009) Physics of the Lindemann melting rule. Phil Mag 89:1757–1770. https://doi.org/10.1080/14786430802577916

    Article  CAS  Google Scholar 

  12. Xia G (2019) Interdiffusion in group IV semiconductor material systems: applications, research methods and discoveries. Sci Bull 15:1436–1455. https://doi.org/10.1016/j.scib.2019.08.022

    Article  CAS  Google Scholar 

  13. Ana-Maria L, Stavarache I, Palade C, Slav A, Maraloiu VA, Dascalescu I, Cojocaru O, Teodorescu VS, Stoica T, Ciurea ML (2022) From Si nanowires to Ge nanocrystals for VIS-NIR-SWIR sensors and non-volatile memories: a review. arXiv:2206.13260

  14. Zhou G, Alejandra V, Covian C, Lee KH, Han H, Tan CS, Liu J, Xia G (2020) Improved thin film quality and photoluminescence of N-doped epitaxial germanium-on-silicon using MOCVD. Opt Mater Express 10:1–13. https://doi.org/10.1364/OME.380754

    Article  Google Scholar 

  15. Mikhailova MP, Moiseev KD, Yakovlev YuP (2019) Discovery of III–V semiconductors: physical properties and application. Semiconductors 53:273–290. https://doi.org/10.1134/S1063782619030062

    Article  CAS  Google Scholar 

  16. Vyas K, Espinosa DHG, Hutama D, Jain SK, Mahjoub R, Mobini E, Awan KM, Lundeen J, Dolgaleva K (2022) Group III-V semiconductors as promising nonlinear integrated photonic platforms. Adv Phys: X 7:2097020. https://doi.org/10.1080/23746149.2022.2097020

    Article  CAS  Google Scholar 

  17. Mecheri B, Meradji H, Ghemid S, Bendjeddou H, Boukhtouta M (2021) Structural and electronic properties of ZnSiAs2, ZnSnAs2, and their mixed crystals ZnSi1 – xSnxAs2. Semiconductors 55:146–153. https://doi.org/10.1134/S1063782621020196

    Article  CAS  Google Scholar 

  18. Yun HJ, Lim J, Roh J, Neo DCJ, Law M, Klimov VI (2020) Solution-processable integrated CMOS circuits based on colloidal CuInSe2 quantum dots. Nat Commun 11:5280. https://doi.org/10.1038/s41467-020-18932-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chae SY, Lee M, Kim EK, Cho JG, Kim BH, Joo OS (2020) p-CuInS2/n-polymer semiconductor heterojunction for photoelectrochemical hydrogen evolution. Chemsuschem 13:6651–6659. https://doi.org/10.1002/cssc.202002123

    Article  CAS  PubMed  Google Scholar 

  20. Haas J, Stach R, Kolm C, Krska R, Mizaikoff B (2020) Gallium arsenide waveguides as a platform for direct mid-infrared vibrational spectroscopy. Anal Bioanal Chem 412:3447–3456. https://doi.org/10.1007/s00216-020-02546-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Arab N, Fotouhi L, Ricci PC (2021) Electrosynthesised CdS@ZnS quantum dots decorated multi walled carbon nanotubes for analysis of propranolol in biological fluids and pharmaceutical samples. Microchem J 168:106453. https://doi.org/10.1016/j.microc.2021.106453

    Article  CAS  Google Scholar 

  22. Li PL, Li G, Zhang W, She C, Lin J, Liu S, Yue F, Jing C, Cheng Y, Chu J (2020) A flexible paper sensor based on polyaniline/germanium film for NH3 detection. Mater Lett 278:128438. https://doi.org/10.1016/j.matlet.2020.128438

    Article  CAS  Google Scholar 

  23. Miroshnik L, Rummel B, Li AY, Balakrishnan G, Sinno T, Han SW (2021) Maintaining atomically smooth GaAs surfaces after high-temperature processing for precise interdiffusion analysis and materials engineering. J Vacuum Sci Technol 39:062212. https://doi.org/10.1116/6.0001399

    Article  CAS  Google Scholar 

  24. Pu Ch, Wang Z, Tang X, Zhou D, Cheng J (2022) A novel two-dimensional ZnSiP2 monolayer as an anode material for K-Ion batteries and NO2 gas sensing. Molecules 27:6726. https://doi.org/10.3390/molecules27196726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Alim MA, Chowdhury AZ, Islam MS, Gaquiere C, Crupi G (2021) Temperature-sensitivity of two microwave HEMT devices: AlGaAs/GaAs vs. AlGaN/GaN Heterostructures. Electronics 10:1115. https://doi.org/10.3390/electronics10091115

    Article  CAS  Google Scholar 

  26. Sy TT, Nghia NV, Thang CS, Toan NL, Trung NT (2022) Analysis of temperature-dependent EXAFS Debye-Waller factor of semiconductors with diamond crystal structure. Solid State Commun 353:114842. https://doi.org/10.1016/j.ssc.2022.114842

    Article  CAS  Google Scholar 

  27. Qader IN, Abdullah BJ, Omar MS (2020) Range determination of the influence of carrier concentration on lattice thermal conductivity for bulk Si and nanowires. Aksaray Univ J Sci Eng. https://doi.org/10.29002/asujse.657837

    Article  Google Scholar 

  28. Hamarashid MM, Omar MS (2021) Hydrostatic pressure effects on the processes of lattice thermal conductivity of bulk silicon and nanowires. Bull Mater Sci 44:201. https://doi.org/10.1007/s12034-021-02467-6

    Article  CAS  Google Scholar 

  29. Karim HH, Omar MS, Qader IN (2022) Hydrostatic pressure effect on melting temperature and lattice thermal conductivity of bulk and nanowires of indium arsenide. Phys B-Condens Matter 640:414045. https://doi.org/10.1016/j.physb.2022.414045

    Article  CAS  Google Scholar 

  30. Hamarashid MM, Omar MS, Qader IN (2022) Hydrostatic pressure effect on lattice thermal conductivity in Si nanofilms. Silicon 14:12789–12798. https://doi.org/10.1007/s12633-022-01985-0

    Article  CAS  Google Scholar 

  31. Suliman AK, Omar MS (2021) Modified Callaway model calculations for lattice thermal conductivity of a 20 nm diameter silicon nanowire. Exp Theor Nanotechnol 5:65–76. https://doi.org/10.56053/5.1.65

    Article  Google Scholar 

  32. Karim HH, Omar MS (2020) Temperature-dependence calculation of lattice thermal conductivity and related parameters for the zinc blende and wurtzite structures of InAs nanowires. Bull Mater Sci 43:54. https://doi.org/10.1007/s12034-019-2011-1

    Article  CAS  Google Scholar 

  33. Omar MS (2007) Lattice thermal expansion for normal tetrahedral compound semiconductors. Mater Res Bull 42:319–326. https://doi.org/10.1016/j.materresbull.2006.05.031

    Article  CAS  Google Scholar 

  34. Zener C, Jauncey GEM (1936) Theory of the effect of temperature on the reflection of X-Rays by crystals. II. Anisotropic crystals. Phys Rev 49:122–127. https://doi.org/10.1103/physrev.49.122

    Article  CAS  Google Scholar 

  35. Lawson AC (2001) An improved Lindemann melting rule. Philos Mag B 81:255–266. https://doi.org/10.1080/13642810108221982

    Article  CAS  Google Scholar 

  36. Sadao A (2005) Properties of Group-IV, III-V and II-VI semiconductors. Wiley, Hoboken

    Google Scholar 

  37. Kumar V, Shrivastava AK, Banerji R, Dhirhe D (2009) Debye temperature and melting point of ternary chalcopyrite semiconductors. Solid State Commun 149:1008–1011. https://doi.org/10.1016/j.ssc.2009.04.003

    Article  CAS  Google Scholar 

  38. Schoening FRL, Vermeulen LA (1969) X-ray measurement of the Debye temperature for diamond at low temperatures. Solid State Commun 7:15–18. https://doi.org/10.1016/0038-1098(69)90682-6

    Article  CAS  Google Scholar 

  39. Burgemeister EA, Von Muench W, Pettenpaul E (1979) Thermal conductivity and electrical properties of 6Hsilicon carbide. J Appl Phys 50:5790–5794. https://doi.org/10.1063/1.326720

    Article  CAS  Google Scholar 

  40. Siddharth N, Jana P, Dietrich S, Roy S (2023) Effect of SiC particle size on the strength and stiffness of porous Si3N4–SiC composites fabricated via a low-temperature sintering process. Mater Sci Eng A 864:144614. https://doi.org/10.1016/j.msea.2023.144614

    Article  CAS  Google Scholar 

  41. Tari A (2003) The specific heat of matter at low temperatures. Imperial College Press. https://doi.org/10.1142/p254

  42. Weil R, Groves WO (1968) The elastic constants of gallium phosphide. J Appl Phys 39:4049–4051. https://doi.org/10.1063/1.1656922

    Article  CAS  Google Scholar 

  43. Gerlich D (1963) Elastic constants of single-crystal indium arsenide. J Appl Phys 34:2915. https://doi.org/10.1063/1.1729833

    Article  CAS  Google Scholar 

  44. Slack GA (1972) Thermal conductivity of II-VI compounds and phonon scattering by Fe2+ impurities. Phys Rev 6:3791–3800. https://doi.org/10.1103/physrevb.6.3791

    Article  CAS  Google Scholar 

  45. Strauss AJ (1977) The physical properties of cadmium telluride. Rev Phys Appl 12:167–184. https://doi.org/10.1051/rphysap:01977001202016700

    Article  CAS  Google Scholar 

  46. Omar MS (2010) Lattice thermal expansion and ionicity for III2–VI3 binary defect tetrahedral compound semiconductors and their alloys. Int J Thermophys. https://doi.org/10.1007/s10765-010-0787-8

    Article  Google Scholar 

  47. Wallace DC (1991) Melting of elements. Proceedings 433:631–661. https://doi.org/10.1098/rspa.1991.0068

    Article  CAS  Google Scholar 

  48. Singh BP, Baghel VS, Baghel KS (2009) Electronegativity, fractional ionic character and refractive index of binary compounds. Indian J Pure Appl Phys 47:793–803.  https://nopr.niscpr.res.in/handle/123456789/6197

  49. Omar MS (2016) Structural and thermal properties of elementary and binary tetrahedral semiconductor nanoparticles. Int J Thermophys 37:11. https://doi.org/10.1007/s10765-015-2026-9

    Article  CAS  Google Scholar 

  50. Sadaiyandi K (2009) Size dependent Debye temperature and mean square displacements of nanocrystalline Au, Ag and Al. Mater Chem Phys 115:703–706. https://doi.org/10.1016/j.matchemphys.2009.02.008

    Article  CAS  Google Scholar 

  51. Qu YD, Liang XL, Kong XO, Zhang WJ (2017) Size-dependent cohesive energy, melting temperature, and Debye temperature of spherical metallic nanoparticles. Phys Met Metall 118:528–534. https://doi.org/10.1134/s0031918x17060102

    Article  CAS  Google Scholar 

  52. Chen QY, Sundman B (2001) Calculation of debye temperature for crystalline structures—a case study on Ti, Zr, and Hf. Acta Mater 49:947–961. https://doi.org/10.1016/s1359-6454(01)00002-7

    Article  CAS  Google Scholar 

  53. Abrahams SC, Hsu FSL (1975) Debye temperatures and cohesive properties. J Chem Phys 63:1162–1165. https://doi.org/10.1063/1.431443

    Article  CAS  Google Scholar 

  54. Dutta MS, Kr PM, Mahto P (2017) Bulk modulus of group-IV and its compound semiconductors. J Alloy Compd 695:3547–3551. https://doi.org/10.1016/j.jallcom.2016.11.415

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support from the College of Science at the Salahaddin University-Erbil in Iraq.

Funding

This work was fully funded by the College of Science at the University of Salahaddin-Erbil (grant number 3/1/8212).

Author information

Authors and Affiliations

Authors

Contributions

Vian Othman Hassan and Mustafa Saeed Omer contributed to the study conception and design. Material preparation, data collection and analysis were performed by [Vian Othman Hassan]and [Mustafa Saeed Omar] All authors read and approved the final manuscript.

Corresponding author

Correspondence to V. O. Hassan.

Ethics declarations

Ethical Approval

The authors declare that they have no known competing financial interest or personal relationships that could have appeared to influence the work reported in this paper.

Consent to Participate

All individual participants in the research provided their informed consent.

Consent to Publish (Ethics)

The Authors hereby consent to the publication of the Work in the “Silicon” journal.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassan, V.O., Omar, M.S. Lindemann’s Role of Melting, Debye Temperature, Dimensionless Mass and Bond Energies for Si-based Tetrahedral Compound Semiconductors. Silicon 16, 15–23 (2024). https://doi.org/10.1007/s12633-023-02608-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-023-02608-y

Keywords

Navigation