Skip to main content
Log in

Numerical Investigation and Design of Optical On-Chip Waveguide with Engineered Dispersion for Generation of Supercontinuum-Based Frequency Combs

  • Research
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

In this paper, with dispersion engineering, two waveguides with silicon core and SiO2 cladding are proposed to generate the supercontinuum spectrum and optical frequency combs. By injecting a pulse with a peak power of 800 W and a pulse duration of 50 fs, the output supercontinuum spectrum is obtained from a wavelength of 1100 nm to 4000 nm. Also, broadband optical frequency combs based on a supercontinuum have been obtained by applying a maximum power of 1 kW and a pulse width of 100 fs. Our proposed structure shows promise for achieving flat dispersion and can be useful in engineering applications. The structure exhibits two zero dispersion wavelengths at 1890 nm and 2850 nm, respectively. This flat dispersion can be very useful to achieve the desired output spectrum. Due to the materials used and the flat structure of the proposed waveguides, these can be used for integrated optical circuits as well as applications in optical communications, spectroscopy, and sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Qin J, Shu H, Chang L, Xie W, Tao Y, Jin M, Wang X, Bowers JE (2020) On-chip high-efficiency wavelength multicasting of PAM3/PAM4 signals using low-loss AlGaAs-on-insulator nanowaveguides. Opt Lett 45(16):4539–4542. https://doi.org/10.1364/OL.398777

    Article  PubMed  Google Scholar 

  2. Dupont C, Petersen J, Thogersen C, Agger OB, Keiding SR (2012) IR microscopy utilizing intense supercontinuum light source. Opt Express 20(5):4887–4892. https://doi.org/10.1364/OE.20.004887

    Article  PubMed  Google Scholar 

  3. Husakou AV, Herrmann J (2001) Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers. Phys Rev Lett 27:203901. https://doi.org/10.1103/PhysRevLett.87.203901

    Article  CAS  Google Scholar 

  4. Willner AE, Fallahpour A, Alishahi F, Cao Y, Almaiman A, Liao P, Zou K, Willner AN, Tur M (2019) All-optical signal processing techniques for flexible networks. Lightwave Technol 37:21. https://doi.org/10.1109/JLT.2018.2873245

    Article  CAS  Google Scholar 

  5. Li M, Zhang L, Dai DX (2018) Hybrid silicon nonlinear photonics. Photonics Res 6(5):B13–B22. https://doi.org/10.1364/PRJ.6.000B13

    Article  CAS  Google Scholar 

  6. Moss DJ, Morandotti R, Lipson M (2013) New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics. Nat Photonics 7:597. https://doi.org/10.1038/nphoton.2013.183

    Article  CAS  Google Scholar 

  7. Tan DTH, Ooi KJA, Ng DKT (2018) Nonlinear optics on silicon-rich nitride—a high nonlinear figure of merit CMOS platform. Photonics Res 6(5):B50. https://doi.org/10.1364/PRJ.6.000B50

    Article  CAS  Google Scholar 

  8. Frigg A, Boes A, Ren G, Abdo I, Choi D, Gees S, Mitchell A (2019) Low loss CMOS-compatible silicon nitride photonics utilizing reactive sputtered thin films. Opt Express 27:37795. https://doi.org/10.1364/OE.380758

    Article  PubMed  CAS  Google Scholar 

  9. Gong Z, Bruch A, Shen M, Guo X, Jung H, Fan L, Liu X, Zhang L, Wang J, Li J, Yan J, Tong H (2018) High-fidelity cavity soliton generation in crystalline AlN micro-ring resonators. Opt Lett 43(18):4366–4369. https://doi.org/10.1364/OL.43.004366

    Article  PubMed  CAS  Google Scholar 

  10. Amirhassan S, Pawel L, Yoshitomo O, Gary H, Nathalie P, Alexander G, Marko L (2019) Supercontinuum generation in angle-etched diamond waveguides. Opt Lett 44(16):4056–4059. https://doi.org/10.1364/OL.44.004056

    Article  Google Scholar 

  11. Pu M, Ottaviano L, Semenova E, Yvind K (2016) Efficient frequency comb generation in AlGaAs-on-insulator. Optica 3(8):823–826. https://doi.org/10.1364/OPTICA.3.000823

    Article  CAS  Google Scholar 

  12. Hu H, Ros F, Pu M, Ye F, Ingerslev K, Silva E, Amma Y, Sasaki Y, Mizuno T, Morioka T, Oxenlowe L (2018) Single-source chip-based frequency comb enabling extreme parallel data transmission. Nat Photonics 12:469–473. https://doi.org/10.1038/s41566-018-0205-5

    Article  CAS  Google Scholar 

  13. Chang L, Boes A, Guo X, Spencer DT, Kennedy M, Bowers JE (2018) Heterogeneously integrated GaAs waveguides on insulator for efficient frequency conversion. Laser Photonics Rev 12:1800149. https://doi.org/10.1002/lpor.201800149

    Article  CAS  Google Scholar 

  14. Karami R, Seifouri M, Olyaee S, Chitsazian M, Alizadeh MR (2017) Numerical analysis of a circular chalcogenide/silica hybrid nanostructured photonic crystal fiber for the purpose of dispersion compensation. Int J Numer 30:e2184. https://doi.org/10.1002/jnm.2184

    Article  Google Scholar 

  15. Alizadeh MR, Seifouri M (2017) Dispersion engineering of highly nonlinear rib waveguide for mid-infrared supercontinuum generation. Optik 140:233–238. https://doi.org/10.1016/j.ijleo.2017.04.056

    Article  CAS  Google Scholar 

  16. Seifouri M, Alizadeh MR (2018) Supercontinuum generation in a highly nonlinear chalcogenide/ MgF2 hybrid photonic crystal fiber. IJOP 12(1):69–78. http://ijop.ir/article-1-277-en.html

  17. Alizadeh MR, Seifouri M (2020) Design and analysis of a dispersion-engineered and highly nonlinear rib waveguide for generation of broadband supercontinuum spectra. Freq. 74(3–4):153–161. https://doi.org/10.1515/freq-2019-0098

    Article  Google Scholar 

  18. Zhang L, Lin Q, Yue Y, Yan Y, Beausoleil RG, Willner AE (2012) Silicon waveguide with four zero-dispersion wavelengths and its application in on-chip octave-spanning supercontinuum generation. Opt Express 20(2):1685–1690. https://doi.org/10.1364/OE.20.001685

    Article  PubMed  CAS  Google Scholar 

  19. Kuyken B, Ideguchi T, Holzner S et al (2015) An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide. Nat Commun 6:6310. https://doi.org/10.1038/ncomms7310

    Article  PubMed  CAS  Google Scholar 

  20. Ciret C, Gorza S-P (2017) Generation of ultra-broadband coherent supercontinua in tapered and dispersion-managed silicon nanophotonic waveguide. J Opt Soc Am B 34:1156–1162. https://doi.org/10.1364/JOSAB.34.001156

    Article  CAS  Google Scholar 

  21. Kou R, Hatakeyama T, Horng J, Kang J-H, Wang Y, Zhang X, Wang F (2018) Mid-IR broadband supercontinuum generation from a suspended silicon waveguide. Opt Lett 43:1387–1390. https://doi.org/10.1364/OL.43.001387

    Article  PubMed  CAS  Google Scholar 

  22. Pu M, Ottaviano L, Semenova E, Da Ros F, Hu H, Kamel AN, Zheng Y, Stassen E, Galili M, Oxenløwe LK, Yvind K (2017) An ultra-efficient nonlinear planar integrated platform for optical signal processing and generation. Asia Communications and Photonics Conference (ACP), OSA. https://doi.org/10.1364/ACPC.2017.S4J.6

  23. Oxenlowe LK, Hua Ji M, Galili MP, Hao Hu, Mulvad HCH, Yvind K, Hvam JM, Clausen AT, Jeppesen P (2012) Silicon photonics for signal processing of Tbit/s serial data signals. IEEE J Sel Top Quantum Electron 18(2):996–1005. https://doi.org/10.1109/JSTQE.2011.2140093

    Article  CAS  Google Scholar 

  24. Da Ros F, Pu M, Ottaviano L, Hu H, Semenova E, Galili M, Yvind K, Oxenlowe LK (2016) Phase-sensitive four-wave mixing in AlGaAs-on-insulator nano-waveguides. IEEE Photon.s Con. (IPC), 505–506. https://doi.org/10.1109/IPCon.2016.7831202

  25. Ke K, Xia C, Islam MN, Welsh MJ, Freeman MJ (2009) Mid-infrared absorption spectroscopy and differential damage in vitro between lipids and proteins by an all-fiber-integrated supercontinuum laser. Opt Express 17:12627–12640. https://doi.org/10.1364/OE.17.012627

    Article  PubMed  CAS  Google Scholar 

  26. Eggleton BJ, Luther-Davies B, Richardson K (2011) Chalcogenide photonics. Nat Photon 5:141–148. https://doi.org/10.1038/nphoton.2011.309

    Article  CAS  Google Scholar 

  27. Aggarwal ID, Sanghera JS (2002) Development and applications of chalcogenide glass optical fibers at NRL. J Optoelectron Adv Mater 4:665–678. https://doi.org/10.1016/S0022-3093(97)00051-3

    Article  CAS  Google Scholar 

  28. Dudley JM, Genty G, Coen S (2006) Supercontinuum generation in photonic crystal fiber. Rev Mod Phys 78:1135–1184. https://doi.org/10.1103/RevModPhys.78.1135

    Article  CAS  Google Scholar 

  29. Dudley JM, Taylor JR (2009) Ten years of nonlinear optics in photonic crystal fiber. Nat Photon 3:85–90. https://doi.org/10.1038/nphoton.2008.285

    Article  CAS  Google Scholar 

  30. Walker PM, Whittaker CE, Skryabin DV, Cancellieri E, Royall B, Sich M, Farrer I, Ritchie DA, Skolnick MS, Krizhanovskii DN (2019) Spatiotemporal continuum generation in polariton waveguides. Sci Appl 8(6):1–11. https://doi.org/10.1038/s41377-019-0120-7

    Article  CAS  Google Scholar 

  31. Dai S, Wang Y, Peng X, Zhang P, Wang X, Yinsheng Xu (2018) Review of mid-infrared supercontinuum generation in chalcogenide glass fibers. Appl Sci 8:707. https://doi.org/10.3390/app8050707

    Article  CAS  Google Scholar 

  32. Oh YD et al (2017) Coherent ultra-violet to near-infrared generation in silica ridge waveguides. Nat Commun 8:13922. https://doi.org/10.1038/ncomms13922

    Article  CAS  Google Scholar 

  33. Safioui J et al (2014) Supercontinuum generation in hydrogenated amorphous silicon waveguides at telecommunication wavelengths. Opt Express 22:3089–3097. https://doi.org/10.1364/OE.22.003089

    Article  PubMed  CAS  Google Scholar 

  34. Møller U, Yu Y, Kubat I, Petersen CR, Gai X, Brilland L, Méchin D, Caillaud C, Troles J, Luther Davies B, Bang O (2015) Multi-milliwattmid-infrared supercontinuum generation in a suspended core chalcogenide fiber. Opt Exp 23:3282. https://doi.org/10.1364/OE.23.003282

    Article  CAS  Google Scholar 

  35. Luo B, Wang Y, Dai S, Sun Y, Zhang P, Wang X, Chen F (2017) Midinfrared supercontinuum generation in As2Se3–As2S3 chalcogenide glass fiber with high NA. J Lightwave Technol 35(12):2464–2469. https://doi.org/10.1109/JLT.2016.2623639

    Article  CAS  Google Scholar 

  36. Yu Y, Gai X, Ma P, Choi DY, Yang ZY, Wang RP, Debbarma S, Madden SJ, Luther-Davies B (2014) A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide. Laser Photon Rev 8(5):792–798. https://doi.org/10.1002/lpor.201400034

    Article  CAS  Google Scholar 

  37. McCarthy J, Bookey H, Beecher S, Lamb R, Elder I, Kar AK (2013) Spectrally tailored mid-infrared super-continuum generation in aburied waveguide spanning 1750nm to 5000nm for atmospherictransmission. Appl Phys Lett 103(15):151103. https://doi.org/10.1063/1.4824358

    Article  CAS  Google Scholar 

  38. Ma P, Choi DY, Yu Y, Gai X, Yang Z, Debbarma S, Madden S, Luther-Davies B (2013) Low-loss chalcogenide waveguides for chemical sensing in the mid-infrared. Opt Express 21(24):29927–29937

    Article  PubMed  Google Scholar 

  39. Obrzud E, Rainer M, Harutyunyan A, Anderson MH, Liu J, Geiselmann M, Chazelas B et al (2019) A microphotonic astrocomb. Nat Photon 13:31–35. https://doi.org/10.1038/s41566-018-0309-y

    Article  CAS  Google Scholar 

  40. Feifle JP, Brasch V, Lauermann M, Yu Y, Wegner D, Herr T, Hartinger K et al (2014) Coherent terabit communications with microresonator Kerr frequency combs. Nat Photon 8:375–380. https://doi.org/10.1038/nphoton.2014.57

    Article  CAS  Google Scholar 

  41. Xue X, Zheng X, Zhou B, Weiner AM (2018) Microresonator frequency combs for integrated microwave photonics. IEEE Photo Tech Lett 30(21):1814–1817. https://doi.org/10.1109/LPT.2018.2875945

    Article  CAS  Google Scholar 

  42. Hu H, Oxenløwe LK (2021) Chip-based optical frequency combs for high-capacity optical communications. Nanophotonics 10(5):1367–1385. https://doi.org/10.1515/nanoph-2020-0561

    Article  CAS  Google Scholar 

  43. Company VT, Weiner AM (2014) Optical frequency comb technology for ultrabroadband radio-frequency photonics. Laser Photonics 8(3):368–393. https://doi.org/10.1002/lpor.201300126

    Article  Google Scholar 

  44. Zhang M, Buscaino B, Wang C, Ansari AS, Reimer C, Zhu R, Kahn JM et al (2019) Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature 568:373–377. https://doi.org/10.1038/s41586-019-1008-7

    Article  PubMed  CAS  Google Scholar 

  45. Zhang Y, Qian C, Li D, Zhang S, Zhao J (2016) Long-term stabilization of an actively mode-locked Er-doped fiber-ring laser via dynamic intracavity loss feedback. J Lightwave Technol 34:3959–3965. https://doi.org/10.1109/JLT.2016.2597294

    Article  CAS  Google Scholar 

  46. Liu G, Lu Z, Liu J, Mao Y, Vachon M, Song C, Barrios P et al (2020) Passively mode-locked quantum dash laser with an aggregate 5.376 Tbit/s PAM-4 transmission capacity. Opt Express 28(4):4587–4593. https://doi.org/10.1364/OE.386266

    Article  PubMed  Google Scholar 

  47. Kippenberg TJ, Gaeta AL, Lipson M, Gorodetsky ML (2018) Dissipative Kerr solitons in optical microresonators. Science 361(6402):8083. https://doi.org/10.1126/science.aan8083

    Article  CAS  Google Scholar 

  48. Obrzud E, Rainer M, Harutyunyan A, Chazelas B, Cecconi M, Ghedina A, Molinari E et al (2018) Broadband near-infrared astronomical spectrometer calibration and on-sky validation with an electro-optic laser frequency comb. Opt Express 26(26):34830–34841. https://doi.org/10.1364/OE.26.034830

    Article  PubMed  CAS  Google Scholar 

  49. Yi D, Chunjiang W, Liu Y, Feng S (2022) Dual-pumped flat optical frequency comb based on normal dispersion AlGaAs on insulator waveguide: numerical investigation. Opt Commun 502:127415. https://doi.org/10.1016/j.optcom.2021.127415

    Article  CAS  Google Scholar 

  50. Takushima Y, Futami F, Kikuchi K (1998) Generation of over 140-nm-wide supercontinuum from a normal dispersion fiber by using a mode-locked semiconductor laser source. IEEE Photonics Technol Lett 10:1560–1562. https://doi.org/10.1109/68.726749

    Article  Google Scholar 

  51. Myslivets E, Kuo BPP, Alic N, Radic S (2012) Generation of wideband frequency combs by continuous-wave seeding of multistage mixers with synthesized dispersion. Opt Express 20:3331–3344. https://doi.org/10.1364/OE.20.003331

    Article  PubMed  Google Scholar 

  52. Saghaei H, Zahedi A, Karimzadeh R, Parandin F (2017) Line defects on As2Se3-Chalcogenide photonic crystals for the design of all-optical power splitters and digital logic gates. Superlattices Microstruct 110:133–138. https://doi.org/10.1016/j.ijleo.2017.12.01410.1016/j.spmi.2017.08.052

    Article  CAS  Google Scholar 

  53. Saghaei H, Heidari V, Ebnali-Heidari M, Yazdani MR (2016) A systematic study of linear and nonlinear properties of photonic crystal fibers. Optik 127(24):11938–11947. https://doi.org/10.1016/j.ijleo.2016.09.111

    Article  CAS  Google Scholar 

  54. Ebnali-Heidari M, Dehghan F, Saghaei H, Koohi-Kamali F, Moravvej-Farshi MK (2012) Dispersion engineering of photonic crystal fibers by means of fluidic infiltration. J Mod Opt 59(16):1384–1390. https://doi.org/10.1080/09500340.2012.715690

    Article  CAS  Google Scholar 

  55. Raei R, Ebnali-Heidari M, Saghaei H (2018) Supercontinuum generation in organic liquid-liquid core-cladding photonic crystal fiber in visible and near-infrared regions. J Opt Soc Am B 35:323–330. https://doi.org/10.1364/JOSAB.35.000323

    Article  CAS  Google Scholar 

  56. Alizadeh MR, Seifouri M (2020) Investigation of highly broadb and supercontinuum generation in a suspended As2Se3 based ridge waveguide. J Opt Nano 5(4):1–16. https://jopn.marvdasht.iau.ir/article_4508_d59ee76037eab8317e83ecbb54b70ee0.pdf

  57. Zho Z, Brown T (2002) Full-vectorial finite-difference analysis of microstructure optical fibers. Opt Express 10(85):3–64. https://doi.org/10.1364/OE.10.000853

    Article  Google Scholar 

  58. Ming C, Qing Y, Tiansong L, Mingsong C, Ning H (2010) New high negative dispersion photonic crystal fiber. New Optik 121:867–871. https://doi.org/10.1016/j.ijleo.2008.09.039

    Article  Google Scholar 

  59. Tomasz K, Salski B, Szumska A, Klimczak M, Buczynski R (2015) FDTD analysis of modal dispersive properties of nonlinearphotonic crystal fibers. Opt Quant Electron 47:99–106. https://doi.org/10.1007/s11082-014-9987-y

    Article  CAS  Google Scholar 

  60. Ye F, Huang J, Gandhi MSA, Li Q (2021) Nearly self-similar pulse compression of high-repetition-rate pulse trains in tapered silicon waveguides. Light Technol 39(14):4717–4724. https://doi.org/10.1109/JLT.2021.3077607

    Article  CAS  Google Scholar 

  61. Ashkan G, Kashaninia A, Sadr A, Saghaei H (2018) Supercontinuum generation with femtosecond optical pulse compression in silicon photonic crystal fibers at 2500 nm. Opt Quant Electron 50:411. https://doi.org/10.1007/s11082-018-1651-5

    Article  CAS  Google Scholar 

  62. Agrawal GP (2013) Nonlinear fiber optics, 5th edn. Elsevier Academic Press, Oxford

    Google Scholar 

  63. Yuhao G, Zeinab J, Lijuan Xu, Bao C, Liao P, Li G, Agarwal AM, Kimerling LC, Michel J, Willner AE, Zhang L (2019) Ultra-flat dispersion in an integrated waveguide with five and six zero-dispersion wavelengths for mid-infrared photonics. Photon Res 7(11):1279–1286. https://doi.org/10.1364/PRJ.7.001279

    Article  Google Scholar 

  64. Kuyken B, Ideguchi T, Holzner S, Yan M, Hansch TW, Van Campenhout J, Verheyen P, Coen S, Leo F, Baets R, Roelkens G, Picque N (2015) An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide. Nat Commun 6:6310. https://doi.org/10.1038/ncomms7310

    Article  PubMed  CAS  Google Scholar 

  65. Deng Y, Wu C, Liu Y, Feng S (2022) Dual-pumped flat optical frequency comb based on normal dispersion AlGaAs on insulator waveguide: numerical investigation. Opt Commun 502:127415. https://doi.org/10.1016/j.optcom.2021.127415

    Article  CAS  Google Scholar 

  66. Agrawal GP (2013) Nonlinear fiber optics, 5th edn. Elsevier Academic Press, Oxford. https://doi.org/10.1016/C2011-0-00045-5

    Book  Google Scholar 

  67. Bristow AD, Rotenberg N, van Driel HM (2007) Two-photon absorption and Kerr coefficients of silicon for 850-2200 nm. Appl Phys Lett 90:191104. https://doi.org/10.1063/1.2737359

    Article  CAS  Google Scholar 

  68. Guo Y, Yuan J, Wang K, Wang H, Cheng Y, Zhou X, Yan B, Sang X, Yu C (2020) Generation of supercontinuum and frequency comb in a nitrobenzene-core photonic crystal fiber with all-normal dispersion profile. Opt Commun 481:126555. https://doi.org/10.1016/j.optcom.2020.126555

    Article  CAS  Google Scholar 

  69. Yuma G, Chen C, Ikeda K, Yoshii K, Hong F-L (2021) Towards generation of optical frequency comb in the short-wavelength visible region using periodically poled lithium niobate waveguides. Results in Optics 2:100035. https://doi.org/10.1016/j.rio.2020.100035

    Article  Google Scholar 

  70. Enomoto K, Hizawa N, Suzuki T, Kobayashi K, Moriwaki Y (2016) Comparison of resonance frequencies of major atomic lines in 398–423 nm. Appl Phys B 122(5):126. https://doi.org/10.1007/s00340-016-6400-5

    Article  CAS  Google Scholar 

  71. Yoshii K, Nomura J, Taguchi K, Hisai Y, Hong F-L (2019) Optical frequency metrology study on nonlinear processes in a waveguide device for ultrabroadband comb generation. Phys Rev Appl 11:054031. https://doi.org/10.1103/PhysRevApplied.11.054031

    Article  CAS  Google Scholar 

  72. Diouf M, Salem AB, Cherif R, Saghaei H, Wague A (2017) Super-flat coherent supercontinuum source in As38.8Se61.2 chalcogenide photonic crystal fiber with all-normal dispersion engineering at a very low input energy. Appl Opt 56:163–169. https://doi.org/10.1364/AO.56.000163

    Article  PubMed  CAS  Google Scholar 

  73. Saghaei H, Van V (2019) Broadband mid-infrared supercontinuum generation in dispersion-engineered silicon-on-insulator waveguide. J Opt Soc Am B 36:A193–A202. https://doi.org/10.1364/JOSAB.36.00A193

    Article  CAS  Google Scholar 

  74. Saghaei H, Ebnali-Heidari M, Moravvej-Farshi MK (2015) Midinfrared supercontinuum generation via As2Se3 chalcogenide photonic crystal fibers. Appl Opt 54:2072–2079. https://doi.org/10.1364/AO.54.002072

    Article  PubMed  CAS  Google Scholar 

  75. Karol T, Martynkien T, Mergo P, Sotor J, Soboń G (2019) Compact all-fiber source of coherent linearly polarized octaves panning supercontinuum based on normal dispersion silica fiber. Sci Rep 9:12313. https://doi.org/10.1038/s41598-019-48726-9

    Article  CAS  Google Scholar 

  76. Ebnali-Heidari M, Saghaei H, Koohi-Kamali F, Naser Moghadasi M, Moravvej-Farshi MK (2014) Proposal for supercontinuum generation by optofluidic infiltrated photonic crystal fibers. IEEE J Sel Top Quantum Electron 20(5):582–589. https://doi.org/10.1109/JSTQE.2014.2307313

    Article  CAS  Google Scholar 

  77. Saghaei H, Moravvej-Farshi MK, Ebnali-Heidari M, Moghadasi MN (2016) Ultra-wide mid-infrared supercontinuum generation in As40Se60 chalcogenide fibers: solid core PCF versus SIF. IEEE J Sel Top Quantum Electron 22(2):279–286. https://doi.org/10.1109/JSTQE.2015.2477048

    Article  CAS  Google Scholar 

  78. Goji Y, Chen C, Ikeda K, Yoshii K, Hong F-L (2021) Towards generation of optical frequency comb in the short-wavelength visible region using periodically poled lithium niobate waveguide. Results in Optics 2:100035. https://doi.org/10.1016/j.rio.2020.100035

    Article  Google Scholar 

  79. Nauta J, Oelmann J-H, Borodin A, Ackermann A, Knauer P, Muhammad IS, Pappenberger R, Pfeifer T, Crespo López-Urrutia JR (2021) XUV frequency comb production with an astigmatism-compensated enhancement cavity. Opt Express 29(2):2624–2636. https://doi.org/10.1364/OE.414987

    Article  PubMed  CAS  Google Scholar 

  80. Xie Y, Li J, Zhang Y, Zeru Wu, Zeng S, Lin S, Zhaoyang Wu, Zhou W, Chen Y, Siyuan Yu (2022) Soliton frequency comb generation in CMOS-compatible silicon nitride microresonators. Photon Res 10:1290–1296. https://doi.org/10.1364/PRJ.454816

    Article  Google Scholar 

  81. Saghaei H, Elyasi P, Shastri BJ (2022) Sinusoidal and rectangular Bragg grating filters: design, fabrication, and comparative analysis. J Appl Phys 132(6):064501. https://doi.org/10.1063/5.0098923

    Article  CAS  Google Scholar 

  82. Saghaei H, Elyasi P, Karimzadeh R (2019) Design, fabrication, and characterization of Mach-Zehnder interferometers. Photonics Nanostructures - Fundam Appl 37:100733. https://doi.org/10.1016/j.photonics.2019.100733

    Article  Google Scholar 

  83. He X-T, Liang E-T, Yuan J-J, Qiu H-Y, Chen X-D, Zhao F-L, Dong J-W (2019) A silicon-on-insulator slab for topological valley transport. Nat Commun 10:872. https://doi.org/10.1038/s41467-019-08881-z

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was done in the Nano-photonics and Optoelectronics Research Laboratory (NORLab), Shahid Rajaee Teacher Training University.

Funding

This work was supported by Shahid Rajaee Teacher Training University under grant number 4976.

Author information

Authors and Affiliations

Authors

Contributions

Mohammad Reza Alizadeh: designed and performed simulations and analyzed data, Mahmood Seifouri: supervised, reviewed, and edited, and Saeed Olyaee: analyzed data, edited, and prepared the final draft of the manuscript.

Corresponding author

Correspondence to Saeed Olyaee.

Ethics declarations

Ethical Approval

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alizadeh, M.R., Seifouri, M. & Olyaee, S. Numerical Investigation and Design of Optical On-Chip Waveguide with Engineered Dispersion for Generation of Supercontinuum-Based Frequency Combs. Silicon 15, 7441–7452 (2023). https://doi.org/10.1007/s12633-023-02596-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-023-02596-z

Keywords

Navigation