Skip to main content
Log in

Growth of Ultrafine Si Embedded SiO2 Nanowires by Pt Catalyst

  • Research
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Ultrafine Si embedded SiO2 nanowires have been prepared by thermal evaporation using Pt catalyst. The ultrafine Si embedded SiO2 nanowires with a diameter of about 10 nm were grown in-situ on the Si substrate, conforming to a vapor-liquid-solid growth mechanism. On account of the existence of the quantum confinement effect, the absorption edge of the ultrafine Si embedded SiO2 nanowires is slightly larger. The photoluminescence result reveals a blue shift in the ultrafine nanowires, which may also be due to the quantum confinement effect caused by the small size. The Pt-related light emission characteristics will enable the development of nanowires in the field of optoelectronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article and its Supplementary Materials.

References

  1. Baek E, Das NR, Cannistraci CV et al (2020) Intrinsic plasticity of silicon nanowire neurotransistors for dynamic memory and learning functions. Nat Electron 3:398–408

    CAS  Google Scholar 

  2. Sanjay K, Srivastava PK, Singh VN et al (2009) Large-scale synthesis, characterization and photoluminescence properties of amorphous silica nanowires by thermal evaporation of silicon monoxide. Phys E 41:1545–1549

    Google Scholar 

  3. Furukawa S, Miyasato T (1998) Quantum size effects on the optical band gap of microcrystalline Si:H. Phys Rev B 38:5726–5729

    Google Scholar 

  4. Wang L, Cheng S, Wu C (2017) Fabrication and high temperature electronic behaviors of n-WO3 nanorods/p-diamond heterojunction. Appl Phys Lett 110:052106–052101

    Google Scholar 

  5. Liu H, Wang Y, Zhao Y et al (2015) Effect of neutral nanometer SiO2 and nisin on properties of edible film. J Bohai Univ (Nat Sci Ed) 36:128–132

    CAS  Google Scholar 

  6. Yang X, Liu Q, Xu J et al (2017) Si nanocrystals embedded in SiO2 nano-networks. J Lumin 192:875–878

    CAS  Google Scholar 

  7. Gao H, Li X, Zhou B et al (2017) On-demand fabrication of Si/SiO2 nanowire arrays by nanosphere lithography and subsequent thermal oxidation. Nanoscale Res Lett 12:105–101

    Google Scholar 

  8. Zhang P, Gao Z, Wang J et al (2021) Numerical modeling of rebar-matrix bond behaviors of nano-SiO2 and PVA fiber reinforced geopolymer composites. Ceram Int 47:11727–11737

    CAS  Google Scholar 

  9. Rao CNR, Govindaraj A, Vivekchand SRC (2006) Inorganic nanomaterials: current status and future prospects. Annu Rep Prog Chem - Sect A 102:20–45

  10. Rao CNR, Deepak FL, Gundiah G, Govindraj A (2003) Inorganic nanowires. Prog Solid Statte Chem 31:5–147

    CAS  Google Scholar 

  11. Wang Y, Schmidt V, Senz S, Gosele U (2006) Epitaxial growth of silicon nanowires using an aluminium catalyst. Nat Nanotechnol 1:186–189

    CAS  PubMed  Google Scholar 

  12. Hibst N, Knitted P, Biskupek J, Kranz C, Mizaikoff B, Strehle S (2016) The mechanisms of platinum-catalyzed silicon nanowire growth. Semicond Sci Technol 31:1–7

    Google Scholar 

  13. Phan DT, Chung GS (2012) Surface acoustic wave hydrogen sensors based on ZnO nanoparticles incorporated with a pt catalyst. Sens Actuators B 161:341–348

    CAS  Google Scholar 

  14. Wang CX, Yin LW, Zhang LY, Liu N, Qi Y (2010) Platinum-nanoparticle-modified TiO2 nanowires with enhanced photocatalytic property. ACS Appl Mater Interfaces 2:3373–3377

    CAS  PubMed  Google Scholar 

  15. Kuang BF, Zhang Q, Fang YX et al (2020) Ring opening of cyclic ether for selective synthesis of renewable 1,5-pentanediol over Pt/WO3@SiO2 catalysts. Ind Eng Chem Res 59:9372–9381

    CAS  Google Scholar 

  16. Domirguez MI, Barrio I, Sánchez M, Centero MA, Montes M, Odriozola JA (2008) CO and VOCs oxidation over Pt/SiO2 catalysts prepared using silicas obtained from stainless steel slags. Catal Today 133:467–474

    Google Scholar 

  17. Almana N, Phivilay SP, Laveille P, Hedhili MN, Fornasiero P, Takanabe K, Basset JM (2016) Design of a core-shell Pt-SiO2 catalyst in a reverse microemulsion system: distinctive kinetics on CO oxidation at low temperature. J Catal 340:368–375

    CAS  Google Scholar 

  18. Markov S, Sushko PV, Roy S, Fiegna C, Sangiorigi E, Shluger AL, Asenov A (2008) Si–SiO2 interface band-gap transition-effects on MOS inversion layer. Phys Status Solidi A205:1290–1295

    Google Scholar 

  19. French RH, Rahme RA, Jones DJ, Mcneil LE (1992) Absorption edge and band gap of SiO2 fused silica glass. Ceram Trans 28:63–80

    CAS  Google Scholar 

  20. Chiodini N, Paleari A, DiMartino D, Spinolo G (2002) SnO2 nanocrystals in SiO2: a wide-band-gap quantum-dot system. Appl Phys Lett 81:1702–1704

    CAS  Google Scholar 

  21. Zhang SL, Wang X, Ho KS (1994) Raman spectra in a broad frequency region of p-type porous silicon. J Appl Phys 76:3016–3019

    CAS  Google Scholar 

  22. Li BB, Yu DP, Zhang SL (1999) Raman spectral study of silicon nanowires. Phys Rev B 59:1645–1648

    CAS  Google Scholar 

  23. McMillan P (1984) Structural studies of silicate glasses and melts-applications and limitations of Raman spectroscope. Am Mineral 69:622–644

    CAS  Google Scholar 

  24. Glinka YD, Jaroniec M (1997) Spontaneous and stimulated raman scattering from surface phonon modes in aggregated SiO2 nanoparticles. J Phys Chem B 101:8832–8835

    CAS  Google Scholar 

  25. Rkiouak L, Tang MJ, Camp JCJ et al (2014) Optical trapping and Raman spectroscopy of solid particles. Phys Chem Phys 16:11426–11434

    CAS  Google Scholar 

  26. Niu JJ, Sha J, Yang D (2004) Sulfide-assisted growth of silicon nano-wires by thermal evaporation of sulfur powders. Phys E 24:278–281

    CAS  Google Scholar 

  27. Volodin VA, Sachkov VA (2013) Improved model of optical phonon confinement in silicon nanocrystals. J Exp Theor Phys 116:87–94

    CAS  Google Scholar 

  28. Kachurin GA, Tyschenko IE, Zhuravlev KS et al (1997) Visible and near-infrerad luminescence from silicon nanostructures formed by ion implantation and pulse annealing. Nucl Instrum Methods Phys Res Sect B 122:571–574

    CAS  Google Scholar 

  29. Zheng B, Wu Y, Yang P, Liu J (2002) Synthesis of ultra-long and highly oriented silicon oxide nanowires from liquid alloys. Adv Mater 14:122–124

    Google Scholar 

  30. Peng XS, Wang XF, Zhang J, Wang YW, Sun SH, Meng GW, Zhang LD et al (2002) Blue-light emission from amorphous SiOx nanoropes. Appl Phys A 74:1–3

    Google Scholar 

  31. Sun SH, Meng GW, Wang YW, Gao T, Zhang MG, Tian YT, Peng XS, Zhang LD (2003) Large-scale synthesis of SnO2 nanobelts. Appl Phys A 76:287–289

    CAS  Google Scholar 

  32. Zhang Z, Wang SJ, Yu T, Wu T (2007) Controlling the growth mechanism of ZnO nanowires by selecting catalysts. J Phys Chem C 111:17500–17505

    CAS  Google Scholar 

  33. Hannon JB, Kodambaka S, Ross FM, Tromp RM (2006) The influence of the surface migration of gold on the growth of silicon nanowires. Nature 440:69

    CAS  PubMed  Google Scholar 

  34. Wagner RS, Ellis WC (1964) Vapor-liquid-solid mechanism of single crystal growth. Appl Phys Lett 4:89–90

    CAS  Google Scholar 

  35. Zhang Z, Fan XH, Xu L, Lee CS, Lee ST (2001) Morphology and growth mechanism study of self-assembled silicon nanowires synthesized by thermal evaporation. Chem Phys Lett 337:18–24

    CAS  Google Scholar 

  36. Chen K, Huangn Z, Huang J, Fang M, Liu Y, Ji H, Yin L (2013) Synthesis of SiC nanowires by thermal evaporation method without catalyst assistant. Ceram Int 39:1957–1962

    CAS  Google Scholar 

  37. Zacharias M, Heitmann J, Scholz R, Kahler U (2002) Size-controlled highly luminescent silicon nanocrystals: a SiO/SiO2 superlattice approach. Appl Phys Lett 80:661–663

    CAS  Google Scholar 

  38. Tsunekawa S, Fukuda T, Kasuya A (2000) Blue shift in ultraviolet absorption spectra of monodisperse CeO2-x nanoparticles. J Appl Phys 87:1318–1321

    CAS  Google Scholar 

  39. Hosono H, Kajihara K, Suzuki T, Ikuta Y, Skuja L, Hirano M (2002) Vacuum ultraviolet optical absorption band of non-bridging oxygen hole centers in SiO2 glass. Solid State Commun 122:117–120

    CAS  Google Scholar 

  40. Yang S, Li W, Cao B, Zeng H, Cao W (2011) Origin of blue emission from silicon nanoparticles: direct transition and interface recombination. J Phys Chem C 115:21056–21062

    CAS  Google Scholar 

  41. Nishikawa H, Shiroyama T, Nakamura R, Ohki Y, Nagasawa K, Hama Y (1992) Photoluminescence from defect centers in high-purity silica glasses observed under 7.9 eV excitation. Phys Rev B 45:586–591

    CAS  Google Scholar 

  42. Zhu YQ, Hu WB, Hsu WK et al (1999) A simple route to silicon-based nanostructures, adv. Matter 11:844–847

    CAS  Google Scholar 

  43. Qin GG, Lin J, Duan JQ, Yao GQ (1996) A comparative study of ultraviolet emission with peak wavelengths around 350 nm from oxidized porous silicon and that from SiO2 powder. Appl Phys Lett 69:1689–1691

    CAS  Google Scholar 

  44. Bornacelli J, Silva-Pereyra HG, Rodriguez-Fernandez L, Avalos-Borja M, Oliver A (2016) From photoluminescence emissions to plasmonic properties in platinum nanoparticles embedded in silica by ion implantation. J Lumin 179:8–15

    CAS  Google Scholar 

  45. Lockwood DJ, Tsybeskov L (2008) Optical properties of silicon nanocrystal superlattices. J Nanophotomics 3:022501–022501

    Google Scholar 

  46. Saar A (2009) Photoluminescence from silicon nanostructures: the mutual role of quantum confinement and surface chemistry. J Nanophotomics 3:032501–032501

    Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to the reviewers of the manuscript for their valuable suggestions and comments.

Funding

This work was financially supported by the National Natural Science Foundation of China (12004050) and Foundation of Liaoning Educational Committee (LJKQZ2021137, LJKZ1024), the project of Liaoning Provincial Science and Technology Program 2018 (20180550449). Portions of this work were performed at 4W2 beamline, Beijing Synchrotron Radiation Facility (BSRF), which is supported by Chinese Academy of Sciences (grant no. KJCX2-SW-N20, KJCX2-SW-N03).

Author information

Authors and Affiliations

Authors

Contributions

Xibao Yang: Conceptualization, Investigation, Formal analysis, Project administration, Supervision, Methodology, Resources. Hang Lv: Conceptualization, Investigation, Supervision, Writing - original draft, Project administration, Writing - review & editing. Shuanglong Chen: Data curation.Qiushi Wang: Validation, Resources, Methodology. Linhai Jiang: Conceptualization, Methodology, Resources, Formal analysis. Hang Lv and Xibao Yang wrote the main manuscript. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Hang Lv or Linhai Jiang.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 42.1 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Lv, H., Chen, S. et al. Growth of Ultrafine Si Embedded SiO2 Nanowires by Pt Catalyst. Silicon 15, 6825–6831 (2023). https://doi.org/10.1007/s12633-023-02538-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-023-02538-9

Keywords

Navigation