Skip to main content

Advertisement

Log in

Effect of ZnO Doping on Biological Properties of SiO2-CaO-P2O5-SrO Bioactive Nanoglasses Synthesized via the Sol–Gel Method

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The current research was done to evaluate the effect of zinc on the structural and biological characteristics of 58 s bioactive glasses. To this end, SiO2–CaO–P2O5–SrO–ZnO bioactive nanoglasses containing different content of ZnO (0, 1, 3, and 5 mol.%) were produced by the sol–gel process. To assess their bioactivity, the specimens were soaked in the simulated body fluid (SBF) solution for 21 days and analyzed employing Fourier transform infrared spectroscopy (FT-IR), x-ray diffraction (XRD), and scanning electron microscopy (SEM) techniques. The results indicated that the bioactive nanoglass sample containing 1 mol.% Zn possessed the highest potential in terms of hydroxyapatite formation. The results obtained by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay proved the superior biocompatibility of Zn-containing nanoglasses compared to Zn-free samples. Accordingly, the sample containing 1 mol.% Zn was considered a suitable candidate for medical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of Data and Materials

The data and materials are available of this article.

References

  1. Bakhtiari A, Cheshmi A, Naeimi M, Fathabad SM, Aliasghari M, Chahardehi AM, Hassani S, Elhami V (2020) Synthesis and characterization of the novel 80S bioactive glass: bioactivity, biocompatibility, cytotoxicity. J Compos Compd. https://doi.org/10.29252/jcc.2.3.1

  2. Calori GM, Mazza E, Colombo M, Ripamonti C (2011) The use of bone-graft substitutes in large bone defects: any specific needs? Inj. https://doi.org/10.1016/j.injury.2011.06.011

    Article  Google Scholar 

  3. Goudarzi Z, Ijadi A, Bakhtiari A, Eskandarinezhad S, Azizabadi N, Jazi MA (2020) Sr-doped bioactive glasses for biological applications. J Compos Compd. https://doi.org/10.29252/jcc.2.2.7

  4. Killion JA, Kehoe S, Geever LM, Devine DM, Sheehan E, Boyd D, Higginbotham CL (2013) Hydrogel/bioactive glass composites for bone regeneration applications: Synthesis and characterisation. Mater Sci Eng C. https://doi.org/10.1016/j.msec.2013.06.013

    Article  Google Scholar 

  5. Kim S-S, Park MS, Jeon O, Choi CY, Kim B-S (2006) Poly (lactide-co-glycolide)/hydroxyapatite composite scaffolds for bone tissue engineering. Biomater. https://doi.org/10.1016/j.biomaterials.2005.08.016

    Article  Google Scholar 

  6. Sidhu VPS, Marchi J, Borges R, Ahmadi E (2022) Surface modification of metallic orthopedic implants for anti-pathogenic characteristics. J Compos Compd. https://doi.org/10.52547/jcc.4.1.6

  7. Balamurugan A, Balossier G, Kannan S, Michel J, Rebelo AHS, Ferreira JMF (2007) Development and in vitro characterization of sol–gel derived CaO–P2O5–SiO2–ZnO bioglass. Acta Biomater. https://doi.org/10.1016/j.actbio.2006.09.005

    Article  PubMed  Google Scholar 

  8. Fathi MH, Mohammadi AD (2008) Preparation and characterization of sol–gel bioactive glass coating for improvement of biocompatibility of human body implant. Mater Sci Eng A. https://doi.org/10.1016/j.msea.2007.05.041

    Article  Google Scholar 

  9. Amini Z, Rudsary SS, Shahraeini SS, Dizaji BF, Goleij P, Bakhtiari A, Irani M, Sharifianjazi F (2021) Magnetic bioactive glasses/Cisplatin loaded-chitosan (CS)-grafted-poly (ε-caprolactone) nanofibers against bone cancer treatment. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2021.117680

    Article  PubMed  Google Scholar 

  10. Olmo N, Martı́n AI, Salinas AJ, Turnay J, Vallet-Regı́ Ma, Lizarbe MA (2003) Bioactive sol–gel glasses with and without a hydroxycarbonate apatite layer as substrates for osteoblast cell adhesion and proliferation. Biomater. https://doi.org/10.1016/S0142-9612(03)00200-X

  11. Askari S, Yazdani E, Arabuli L, Goldadi H, Marnani SAS, Emami M (2022) In-vitro and in-vivo examination for bioceramics degradation. J Compos Compd. https://doi.org/10.52547/jcc.4.3.7

  12. Goudarzi Z, Parvin N, Sharifianjazi F (2019) Formation of hydroxyapatite on surface of SiO2–P2O5–CaO–SrO–ZnO bioactive glass synthesized through sol-gel route. Ceram Int. https://doi.org/10.1016/j.ceramint.2019.06.183

    Article  Google Scholar 

  13. Moghanian A, Nasiripour S, Hosseini SM, Hosseini SH, Rashvand A, Ghorbanoghli A, Pazhouheshgar A, Jazi FS (2021) The effect of Ag substitution on physico-chemical and biological properties of sol-gel derived 60% SiO2-31% CaO-4% P2O5-5% TiO2 (mol%) quaternary bioactive glass. J Non-Cryst Solids. https://doi.org/10.1016/j.jnoncrysol.2021.120732

    Article  Google Scholar 

  14. Sidhu VPS, Borges R, Yusuf M, Mahmoudi S, Ghorbani SF, Hosseinikia M, Salahshour P, Sadeghi F, Arefian M (2021) A comprehensive review of bioactive glass: synthesis, ion substitution, application, challenges, and future perspectives. J Compos Compd. https://doi.org/10.52547/jcc.3.4.5

  15. Sharifianjazi F, Parvin N, Tahriri M (2017) Synthesis and characteristics of sol-gel bioactive SiO2-P2O5-CaO-Ag2O glasses. J Non-Cryst Solids. https://doi.org/10.1016/j.jnoncrysol.2017.09.035

    Article  Google Scholar 

  16. Lin S, Ionescu C, Pike KJ, Smith ME, Jones JR (2009) Nanostructure evolution and calcium distribution in sol–gel derived bioactive glass. J Mater Chem. https://doi.org/10.1039/B814292K

    Article  Google Scholar 

  17. El-Rashidy AA, Waly G, Gad A, Hashem AA, Balasubramanian P, Kaya S, Boccaccini AR, Sami I (2018) Preparation and in vitro characterization of silver-doped bioactive glass nanoparticles fabricated using a sol-gel process and modified Stöber method. J Non-Cryst Solids. https://doi.org/10.1016/j.jnoncrysol.2017.12.044

    Article  Google Scholar 

  18. Goh Y-F, Alshemary AZ, Akram M, Kadir MRA, Hussain R (2013) In vitro study of nano-sized zinc doped bioactive glass. Mater Chem Phys. https://doi.org/10.1016/j.matchemphys.2012.11.022

    Article  Google Scholar 

  19. Sharifianjazi F, Moradi M, Abouchenari A, Pakseresht AH, Esmaeilkhanian A, Shokouhimehr M, Asl MS (2020) Effects of Sr and Mg dopants on biological and mechanical properties of SiO2–CaO–P2O5 bioactive glass. Ceram Int. https://doi.org/10.1016/j.ceramint.2020.06.030

    Article  Google Scholar 

  20. Shahrbabak MSN, Sharifianjazi F, Rahban D, Salimi A (2019) A comparative investigation on bioactivity and antibacterial properties of sol-gel derived 58S bioactive glass substituted by Ag and Zn. Silicon. https://doi.org/10.1007/s12633-018-0063-2

    Article  Google Scholar 

  21. Shafiee P, Nafchi MR, Eskandarinezhad S, Mahmoudi S, Ahmadi E (2021) Sol-gel zinc oxide nanoparticles: advances in synthesis and applications. Synth Sinter. https://doi.org/10.53063/synsint.2021.1477

  22. Meunier PJ, Roux C, Seeman E, Ortolani S, Badurski JE, Spector TD, Cannata J, Balogh A, Lemmel E-M, Pors-Nielsen S (2004) The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis. N Engl J Med. https://doi.org/10.1056/NEJMoa022436

    Article  PubMed  Google Scholar 

  23. Sharifianjazi F, Parvin N, Tahriri M (2017) Formation of apatite nano-needles on novel gel derived SiO2-P2O5-CaO-SrO-Ag2O bioactive glasses. Ceram Int. https://doi.org/10.1016/j.ceramint.2017.08.056

    Article  Google Scholar 

  24. Yamaguchi M, Oishi H, Suketa Y (1987) Stimulatory effect of zinc on bone formation in tissue culture. Biochem Pharmacol. https://doi.org/10.1016/0006-2952(87)90471-0

    Article  PubMed  Google Scholar 

  25. Ishikawa K, Miyamoto Y, Yuasa T, Ito A, Nagayama M, Suzuki K (2002) Fabrication of Zn containing apatite cement and its initial evaluation using human osteoblastic cells. Biomater. https://doi.org/10.1016/S0142-9612(01)00121-1

    Article  Google Scholar 

  26. Oki A, Parveen B, Hossain S, Adeniji S, Donahue H (2004) Preparation and in vitro bioactivity of zinc containing sol-gel–derived bioglass materials. J Biomed Mater Res A. https://doi.org/10.1002/jbm.a.20070

    Article  PubMed  Google Scholar 

  27. Holloway WR, Collier FM, Herbst RE, Hodge JM, Nicholson GC (1996) Osteoblast-mediated effects of zinc on isolated rat osteoclasts: inhibition of bone resorption and enhancement of osteoclast number. Bone. https://doi.org/10.1016/8756-3282(96)00141-X

    Article  PubMed  Google Scholar 

  28. Tang Z-L, Wasserloos K, St. Croix CM, Pitt BR (2001) Role of zinc in pulmonary endothelial cell response to oxidative stress. Am J Physiol Lung Cell Mol Physiol. https://doi.org/10.1152/ajplung.2001.281.1.L243

  29. Yamaguchi M, Inamoto K, Suketa Y (1986) Effect of essential trace metals on bone metabolism in weanling rats: comparison with zinc and other metals’ actions. Res Exp Med. https://doi.org/10.1007/BF01852099

    Article  Google Scholar 

  30. Lusvardi G, Malavasi G, Menabue L, Menziani MC, Pedone A, Segre U, Aina V, Perardi A, Morterra C, Boccafoschi F (2008) Properties of zinc releasing surfaces for clinical applications. J Biomater Appl. https://doi.org/10.1177/0885328207079731

  31. Lusvardi G, Malavasi G, Menabue L, Menziani MC (2002) Synthesis, characterization, and molecular dynamics simulation of Na2O− CaO− SiO2− ZnO glasses. J Phys Chem B. https://doi.org/10.1021/jp020321s

    Article  Google Scholar 

  32. Aina V, Malavasi G, Pla AF, Munaron L, Morterra C (2009) Zinc-containing bioactive glasses: surface reactivity and behaviour towards endothelial cells. Acta Biomater. https://doi.org/10.1016/j.actbio.2008.10.020

    Article  PubMed  Google Scholar 

  33. Westhauser F, Wilkesmann S, Nawaz Q, Hohenbild F, Rehder F, Saur M, Fellenberg J, Moghaddam A, Ali MS, Peukert W (2021) Effect of manganese, zinc, and copper on the biological and osteogenic properties of mesoporous bioactive glass nanoparticles. J Biomed Mater Res A. https://doi.org/10.1002/jbm.a.37136

    Article  PubMed  Google Scholar 

  34. Salinas AJ, Shruti S, Malavasi G, Menabue L, Vallet-Regí M (2011) Substitutions of cerium, gallium and zinc in ordered mesoporous bioactive glasses. Acta Biomater. https://doi.org/10.1016/j.actbio.2011.05.033

    Article  PubMed  Google Scholar 

  35. Ashuri M, Moztarzadeh F, Nezafati N, Hamedani AA, Tahriri M (2012) Development of a composite based on hydroxyapatite and magnesium and zinc-containing sol–gel-derived bioactive glass for bone substitute applications. Mater Sci Eng C. https://doi.org/10.1016/j.msec.2012.07.004

    Article  Google Scholar 

  36. Moghanian A, Ghorbanoghli A, Kazem-Rostami M, Pazhouheshgar A, Salari E, Saghafi Yazdi M, Alimardani T, Jahani H, Sharifian Jazi F, Tahriri M (2020) Novel antibacterial Cu/Mg-substituted 58S-bioglass: Synthesis, characterization and investigation of in vitro bioactivity. Int J Appl Glass Sci. https://doi.org/10.1111/ijag.14510

    Article  Google Scholar 

  37. Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity? Biomater. https://doi.org/10.1016/j.biomaterials.2006.01.017

    Article  Google Scholar 

  38. Ebrahimi M, Manafi S, Sharifianjazi F (2023) The effect of Ag2O and MgO dopants on the bioactivity, biocompatibility, and antibacterial properties of 58S bioactive glass synthesized by the sol-gel method. J Non-Cryst Solids. https://doi.org/10.1016/j.jnoncrysol.2023.122189

    Article  Google Scholar 

  39. Hesaraki S, Gholami M, Vazehrad S, Shahrabi S (2010) The effect of Sr concentration on bioactivity and biocompatibility of sol–gel derived glasses based on CaO–SrO–SiO2–P2O5 quaternary system. Mater Sci Eng C. https://doi.org/10.1016/j.msec.2009.12.001

    Article  Google Scholar 

  40. Azizabadi N, Azar PA, Tehrani MS, Derakhshi P (2021) Synthesis and characteristics of gel-derived SiO2-CaO-P2O5-SrO-Ag2O-ZnO bioactive glass: Bioactivity, biocompatibility, and antibacterial properties. J Non-Cryst Solids. https://doi.org/10.1016/j.jnoncrysol.2020.120568

    Article  Google Scholar 

  41. Mozafari M, Moztarzadeh F, Tahriri M (2010) Investigation of the physico-chemical reactivity of a mesoporous bioactive SiO2–CaO–P2O5 glass in simulated body fluid. J Non-Cryst Solids. https://doi.org/10.1016/j.jnoncrysol.2010.04.040

    Article  Google Scholar 

  42. Moghanian A, Koohfar A, Hosseini S, Hosseini SH, Ghorbanoghli A, Sajjadnejad M, Raz M, Elsa M, Sharifianjazi F (2021) Synthesis, characterization and in vitro biological properties of simultaneous co-substituted Ti+ 4/Li+ 1 58s bioactive glass. J Non-Cryst Solids. https://doi.org/10.1016/j.jnoncrysol.2021.120740

    Article  Google Scholar 

  43. Kanzaki N, Onuma K, Treboux G, Tsutsumi S, Ito A (2000) Inhibitory effect of magnesium and zinc on crystallization kinetics of hydroxyapatite (0001) face. J Phys Chem B. https://doi.org/10.1021/jp9939726

    Article  Google Scholar 

  44. Du RL, Chang J, Ni SY, Zhai WY, Wang JY (2006) Characterization and in vitro bioactivity of zinc-containing bioactive glass and glass-ceramics. J Biomater Appl. https://doi.org/10.1177/0885328206054535

    Article  PubMed  Google Scholar 

  45. Guo W, Zhao F, Wang Y, Tang J, Chen X (2017) Characterization of the mechanical behaviors and bioactivity of tetrapod ZnO whiskers reinforced bioactive glass/gelatin composite scaffolds. J Mech Behav Biomed Mater. https://doi.org/10.1016/j.jmbbm.2017.01.032

    Article  PubMed  Google Scholar 

  46. Neščáková Z, Zheng K, Liverani L, Nawaz Q, Galusková D, Kaňková H, Michálek M, Galusek D, Boccaccini AR (2019) Multifunctional zinc ion doped sol–gel derived mesoporous bioactive glass nanoparticles for biomedical applications. Bioact Mater. https://doi.org/10.1016/j.bioactmat.2019.10.002

    Article  PubMed  PubMed Central  Google Scholar 

  47. Haimi S, Gorianc G, Moimas L, Lindroos B, Huhtala H, Räty S, Kuokkanen H, Sándor GK, Schmid C, Miettinen S (2009) Characterization of zinc-releasing three-dimensional bioactive glass scaffolds and their effect on human adipose stem cell proliferation and osteogenic differentiation. Acta Biomater. https://doi.org/10.1016/j.actbio.2009.04.006

    Article  PubMed  Google Scholar 

  48. Barrioni BR, de Laia AGS, Valverde TM, da Mata Martins TM, Caliari MV, de Sa MA, de Goes AM, de Magalhães PM (2018) Evaluation of in vitro and in vivo biocompatibility and structure of cobalt-releasing sol-gel bioactive glass. Ceram Int. https://doi.org/10.1016/j.ceramint.2018.08.022

    Article  Google Scholar 

  49. Esmaeilzadeh J, Hesaraki S, Borhan S (2021) Poly (d/l) lactide-polycaprolactone/bioactive glass nanocomposites: assessments of in vitro bioactivity and biodegradability. J Compos Compd. https://doi.org/10.52547/jcc.3.4.1

  50. Esmaeilkhanian A, Sharifianjazi F, Abouchenari A, Rouhani A, Parvin N, Irani M (2019) Synthesis and characterization of natural nano-hydroxyapatite derived from turkey femur-bone waste. Appl Biochem Biotechnol. https://doi.org/10.1007/s12010-019-03046-6

    Article  PubMed  Google Scholar 

  51. Balamurugan A, Balossier G, Kannan S, Michel J, Faure J, Rajeswari S (2007) Electrochemical and structural characterisation of zirconia reinforced hydroxyapatite bioceramic sol–gel coatings on surgical grade 316L SS for biomedical applications. Ceram Int. https://doi.org/10.1016/j.ceramint.2005.11.011

    Article  Google Scholar 

  52. El-Kady AM, Ali AF (2012) Fabrication and characterization of ZnO modified bioactive glass nanoparticles. Ceram Int. https://doi.org/10.1016/j.ceramint.2011.07.069

    Article  Google Scholar 

  53. Tulyaganov DU, Makhkamov ME, Urazbaev A, Goel A, Ferreira JMF (2013) Synthesis, processing and characterization of a bioactive glass composition for bone regeneration. Ceram Int. https://doi.org/10.1016/j.ceramint.2012.09.011

    Article  Google Scholar 

  54. Goh YF, Alshemary AZ, Akram M, Abdul Kadir MR, Hussain R (2014) Bioactive glass: an in-vitro comparative study of doping with nanoscale copper and silver particles. Int J Appl Glass Sci. https://doi.org/10.1111/ijag.12061

    Article  Google Scholar 

  55. Zohourfazeli M, Tajer MHM, Moghanian A (2021) Comprehensive investigation on multifunctional properties of zirconium and silver co-substituted 58S bioactive glass. Ceram Int. https://doi.org/10.1016/j.ceramint.2020.09.093

    Article  Google Scholar 

  56. Shahrabi S, Hesaraki S, Moemeni S, Khorami M (2011) Structural discrepancies and in vitro nanoapatite formation ability of sol–gel derived glasses doped with different bone stimulator ions. Ceram Int. https://doi.org/10.1016/j.ceramint.2011.04.025

    Article  Google Scholar 

  57. Sergi R, Bellucci D, Salvatori R, Maisetta G, Batoni G, Cannillo V (2019) Zinc containing bioactive glasses with ultra-high crystallization temperature, good biological performance and antibacterial effects. Mater Sci Eng C. https://doi.org/10.1016/j.msec.2019.109910

    Article  Google Scholar 

  58. Rabiee SM, Nazparvar N, Azizian M, Vashaee D, Tayebi L (2015) Effect of ion substitution on properties of bioactive glasses: A review. Ceram Int. https://doi.org/10.1016/j.ceramint.2015.02.140

    Article  Google Scholar 

  59. Oudadesse H, Dietrich E, Gal YL, Pellen P, Bureau B, Mostafa AA, Cathelineau G (2011) Apatite forming ability and cytocompatibility of pure and Zn-doped bioactive glasses. Biomed Mater. https://doi.org/10.1088/1748-6041/6/3/035006

    Article  PubMed  Google Scholar 

  60. Bejarano J, Caviedes P, Palza H (2015) Sol–gel synthesis and in vitro bioactivity of copper and zinc-doped silicate bioactive glasses and glass-ceramics. Biomed Mater. https://doi.org/10.1088/1748-6041/10/2/025001

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

All authors would like to acknowledge the support of the Science and Research University of Technology for this research.

Author information

Authors and Affiliations

Authors

Contributions

Negar Azizabadi: Methodology, Investigation. Parviz Aberoomand.

Azar: Supervision, Project administration. Mohammad Saber Tehrani: Writing—original draft. Pirouz Derakhshi: Writing—review & editing.

Corresponding author

Correspondence to Parviz Aberoomand Azar.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

All authors have agreed to participate in this research.

Consent for Publication

The authors agree to publish this article in its current form.

Competing Interests

The authors have no relevant financial or nonfinancial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azizabadi, N., Azar, P.A., Tehrani, M.S. et al. Effect of ZnO Doping on Biological Properties of SiO2-CaO-P2O5-SrO Bioactive Nanoglasses Synthesized via the Sol–Gel Method. Silicon 15, 4835–4844 (2023). https://doi.org/10.1007/s12633-023-02399-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-023-02399-2

Keywords

Navigation