Skip to main content
Log in

Using Potash Feldspar as Raw Material, Study on the Synthesis of Molecular Sieves with NaOH-Na2CO3 Alkaline Auxiliary Agent

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

In this paper, the molecular sieves with high added value were creatively prepared from roasting clinker obtained by the process that NaOH-Na2CO3 mixed alkali as auxiliary agent calcined potash feldspar, which could extract the silicon it contains. Firstly, the optimum roasting conditions for SiO2 extraction rate were determined through single factor experiment, that is, roasting temperature 400℃, roasting time 2 h, n(NaOH-Na2CO3): n(potash feldspar) = 5: 1. The orthogonal experiment was used to optimize the extraction process of silica, confirming the primary and secondary relationship of these three influencing factors. Plus, the kinetic analysis shows that the mixed roasting system of NaOH-Na2CO3 and potash feldspar is controlled by both external diffusion and chemical reaction. According to the Arrhenius equation, the apparent activation energy (Ea) was calculated as 16.50329 kJ/mol, and the kinetic equation was [1 − (1 − α)1/3] = 6.1824exp[− 16,503.29/(RT)]t. At last, the roasting clinker obtained at the optimal level was processed by adjusting the ratio of silicon to aluminum, preparing the X-type molecular sieve with good pore structure by hydrothermal method, and its pore volume, specific surface area and hygroscopicity respectively are 0.023104 cc/g, 4.343m2/g and 23.733%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this article.

Code Availability

(Not applicable).

The present study work was not conducted on human or experimental animals where national or international guidelines are used for the protection of human subjects and animal welfare.

References

  1. Xu Q, Dhaundiyal S, Guan C (2020) Structural conflict under the new green dilemma: Inequalities in development of renewable energy for emerging economies[J]. J Environ Manage 273:111117

    Article  Google Scholar 

  2. Antonakakis N, Chatziantoniou I, Filis G (2017) Energy consumption, CO2 emissions, and economic growth: An ethical dilemma[J]. Renew Sustain Energy Rev 68:808–824

    Article  Google Scholar 

  3. Moroni S, Alberti V, Antoniucci V et al (2019) Energy communities in the transition to a low-carbon future: A taxonomical approach and some policy dilemmas[J]. J Environ Manage 236:45–53

    Article  Google Scholar 

  4. Sotoca A (2017) The NOW dilemma in Energy. The possibilities for Architecture and Urbanism[J]. Energy Procedia 115:1–5

    Article  Google Scholar 

  5. Ścibor M, Galbarczyk A, Jasienska G (2019) Living Well with Pollution? The Impact of the Concentration of PM2.5 on the Quality of Life of Patients with Asthma[J]. Int J Env Res Public Health 16(14):2502

    Article  Google Scholar 

  6. Long C, Jiang Z, Shangguan J et al (2021) Applications of carbon dots in environmental pollution control: A review[J]. Chem Eng J 406:126848

    Article  CAS  Google Scholar 

  7. Shu-Yue YIN, Tao W, Wei HUA et al (2020) Mid-summer surface air temperature and its internal variability over China at 1.5 C and 2 C global warming[J]. Adv Clim Chang Res 11(3):185–197

    Article  Google Scholar 

  8. Berry D (2020) Designing innovative clean energy programs: Transforming organizational strategies for a low-carbon transition[J]. Energy Res Soc Sci 67:101545

    Article  Google Scholar 

  9. Gaied ME, Gallala W (2015) Beneficiation of feldspar ore for application in the ceramic industry: Influence of composition on the physical characteristics[J]. Arab J Chem 8(2):186–190

    Article  CAS  Google Scholar 

  10. Gan Z, Cui Z, Yue H et al (2016) An efficient methodology for utilization of K-feldspar and phosphogypsum with reduced energy consumption and CO2 emissions[J]. Chin J Chem Eng 24(11):1541–1551

    Article  CAS  Google Scholar 

  11. Lü L, Li C, Zhang G et al (2018) Decomposition behavior of CaSO4 during potassium extraction from a potash feldspar-CaSO4 binary system by calcination[J]. Chin J Chem Eng 26(4):838–844

    Article  Google Scholar 

  12. Shen X, Shao H, Liu Y et al (2020) Synthesis and photocatalytic performance of ZnO with flower-like structure from zinc oxide ore[J]. J Mater Sci Technol 51:1–7

    Article  CAS  Google Scholar 

  13. Jena SK, Dash N, Samal AK et al (2019) Competency of chlorination roasting coupled water leaching process for potash recovery from K-feldspar: Mechanism and kinetics aspects[J]. Korean J Chem Eng 36(12):2060–2073

    Article  CAS  Google Scholar 

  14. Liu J, Zhai Y, Wu Y et al (2017) Kinetics of roasting potash feldspar in presence of sodium carbonate[J]. Journal of Central South University 24(7):1544–1550

    Article  CAS  Google Scholar 

  15. Jena SK (2021) A review on potash recovery from different rock and mineral sources[J]. Mining, Metallurgy & Exploration 38(1):47–68

    Article  Google Scholar 

  16. Meena VS, Maurya BR, Verma JP (2014) Does a rhizospheric microorganism enhance K+ availability in agricultural soils?[J]. Microbiol Res 169(5–6):337–347

    Article  CAS  Google Scholar 

  17. Kamseu E, Bakop T, Djangang C et al (2013) Porcelain stoneware with pegmatite and nepheline syenite solid solutions: Pore size distribution and descriptive microstructure[J]. J Eur Ceram Soc 33(13–14):2775–2784

    Article  CAS  Google Scholar 

  18. Talbot CJ, Farhadi R, Aftabi P (2009) Potash in salt extruded at Sar Pohl diapir, Southern Iran[J]. Ore Geol Rev 35(3–4):352–366

    Article  Google Scholar 

  19. De Ferri L, Lottici PP, Vezzalini G (2014) Characterization of alteration phases on Potash–Lime–Silica glass[J]. Corros Sci 80:434–441

    Article  Google Scholar 

  20. Zheng M, Hou X, Zhang Y et al (2018) Progress in the investigation of potash resources in western China[J]. China Geology 1(3):392–401

    Article  CAS  Google Scholar 

  21. Jena SK, Dhawan N, Rao DS et al (2014) Studies on extraction of potassium values from nepheline syenite[J]. Int J Miner Process 133:13–22

    Article  CAS  Google Scholar 

  22. Xiaoman Z, Qianxi Y, Mengyao QI et al (2020) Status and Prospect of Potassium Extracting from Potassium Feldspar[J]. Conservation and Utilization of Mineral Resources 40(4):172–178

    Google Scholar 

  23. Wang Z, Zhang Q, Yao Y et al (2018) The extraction of potassium from K-feldspar ore by low temperature molten salt method[J]. Chin J Chem Eng 26(4):845–851

    Article  CAS  Google Scholar 

  24. Awaad M, Naga SM, El-Mehalawy N (2015) Effect of replacing weathered feldspar for potash feldspar in the production of stoneware tiles containing fish bone ash[J]. Ceram Int 41(6):7816–7822

    Article  CAS  Google Scholar 

  25. Crundwell FK (2015) The mechanism of dissolution of the feldspars: Part II dissolution at conditions close to equilibrium[J]. Hydrometallurgy 151:163–171

    Article  CAS  Google Scholar 

  26. Zeng M, Zhou X, Guo J et al (2020) In situ remediation of Cd (II) contaminated paddy fields with activated CaSi mineral material derived from Potash feldspar and its mechanism[J]. Ecol Eng 158:106052

    Article  Google Scholar 

  27. Larsen E, Johannessen NE, Kowalczuk PB et al (2019) Selective flotation of K-feldspar from Na-feldspar in alkaline environment[J]. Miner Eng 142:105928

    Article  CAS  Google Scholar 

  28. Jena SK, Dash N, Rath SS (2019) Effective utilization of lime mud for the recovery of potash from mica scraps[J]. J Clean Prod 231:64–76

    Article  CAS  Google Scholar 

  29. FCrundwell F K (2015) The mechanism of dissolution of the feldspars: Part I. Dissolution at conditions far from equilibrium[J]. Hydrometallurgy 151:151–162

    Article  Google Scholar 

  30. Qiufeng Z, Li X, Wu Q et al (2020) Evolution of mineral phases and microstructure of high efficiency Si–Ca–K–Mg fertilizer prepared by water-insoluble K-feldspar[J]. J Sol-Gel Sci Technol 94(1):3–10

    Article  Google Scholar 

  31. Salimkhani H, Joodi T, Bordbar-Khiabani A et al (2020) Surface and structure characteristics of commercial K-Feldspar powders: Effects of temperature and leaching media[J]. Chin J Chem Eng 28(1):307–317

    Article  CAS  Google Scholar 

  32. Gu YY, Su S, Mo HB et al (2012) Research on the new technology of activated roasting-acid leaching of Potash Feldspar[J]. Multipurp Util Miner Resour 1:36–39

    Google Scholar 

  33. Cui F, Mu W, Wang S et al (2017) Controllable phase transformation in extracting valuable metals from chinese low-grade nickel sulphide ore[J]. Jom 69(10):1925–1931

    Article  CAS  Google Scholar 

  34. Chen L, Deng Y, Han W et al (2022) Effects of zeolite molecular sieve on the hydrocarbon adsorbent and diffusion performance of gasoline engine during cold start[J]. Fuel 310:122427

    Article  CAS  Google Scholar 

  35. Lei L, Pan F, Lindbråthen A et al (2021) Carbon hollow fiber membranes for a molecular sieve with precise-cutoff ultramicropores for superior hydrogen separation[J]. Nat Commun 12(1):1–9

    Article  Google Scholar 

  36. Liu Y, Wang B, Fu Q et al (2021) Polyoxometalate-Based Metal-Organic Framework as Molecular Sieve for Highly Selective Semi-Hydrogenation of Acetylene on Isolated Single Pd Atom Sites[J]. Angew Chem Int Ed 60(41):22522–22528

    Article  CAS  Google Scholar 

  37. Lu TD, Zhao LL, Yong WF et al (2021) Highly solvent-durable thin-film molecular sieve membranes with insoluble polyimide nanofibrous substrate[J]. Chem Eng J 409:128206

    Article  CAS  Google Scholar 

  38. Chuah CY, Goh K, Bae TH (2021) Enhanced performance of carbon molecular sieve membranes incorporating zeolite nanocrystals for air separation[J]. Membranes 11(7):489

    Article  CAS  Google Scholar 

  39. Yu HJ, Shin JH, Lee AS et al (2021) Tailoring selective pores of carbon molecular sieve membranes towards enhanced N2/CH4 separation efficiency[J]. J Membr Sci 620:118814

    Article  CAS  Google Scholar 

  40. Qiu W, Xu L, Liu Z et al (2021) Surprising olefin/paraffin separation performance recovery of highly aged carbon molecular sieve hollow fiber membranes by a super-hyperaging treatment[J]. J Membr Sci 620:118701

    Article  CAS  Google Scholar 

  41. Wang Q, Huang F, Cornelius CJ et al (2021) Carbon molecular sieve membranes derived from crosslinkable polyimides for CO2/CH4 and C2H4/C2H6 separations[J]. J Membr Sci 621:118785

    Article  CAS  Google Scholar 

  42. Guo C, Wang Y, Wang F et al (2021) Adsorption performance of amino functionalized magnetic molecular sieve adsorbent for effective removal of lead ion from aqueous solution[J]. Nanomaterials 11(9):2353

    Article  CAS  Google Scholar 

  43. Xu J, Liu Y, Huang Y (2021) Ultrafast Crystallization of AlPO4-5 Molecular Sieve in a Deep Eutectic Solvent[J]. The Journal of Physical Chemistry C 125(16):8876–8889

    Article  CAS  Google Scholar 

  44. Hou D, Qiao G, Wang P (2021) Molecular dynamics study on water and ions transport mechanism in nanometer channel of 13X zeolite[J]. Chem Eng J 420:129975

    Article  CAS  Google Scholar 

  45. Ramos-Martinez VH, Ramirez-Vargas E, Medellin-Rodriguez FJ et al (2020) Zeolite 13X modification with gamma-aminobutyric acid (GABA)[J]. Microporous Mesoporous Mater 295:109941

    Article  CAS  Google Scholar 

  46. Zhu T, Zhang X, Han Y et al (2019) Preparation of zeolite X by the aluminum residue from coal fly ash for the adsorption of volatile organic compounds[J]. Front Chem 7:341

    Article  CAS  Google Scholar 

  47. Amiripour F, Ghasemi S, Azizi SN (2019) Novel composite based on bimetallic AuNi-embedded nano X zeolite/MWCNT as a superior electrocatalyst for oxygen evolution reaction[J]. ACS Sustainable Chemistry & Engineering 7(24):19384–19395

    Article  CAS  Google Scholar 

  48. Miao S, Liu Z, Ma H et al (2005) Synthesis and characterization of mesoporous aluminosilicate molecular sieve from K-feldspar[J]. Microporous Mesoporous Mater 83(1–3):277–282

    Article  CAS  Google Scholar 

  49. Zhou C, Sun T, Gao Q et al (2014) Synthesis and characterization of ordered mesoporous aluminosilicate molecular sieve from natural halloysite[J]. J Taiwan Inst Chem Eng 45(3):1073–1079

    Article  CAS  Google Scholar 

  50. Su S, Ma H, Chuan X (2016) Hydrothermal synthesis of zeolite A from K-feldspar and its crystallization mechanism[J]. Adv Powder Technol 27(1):139–144

    Article  CAS  Google Scholar 

  51. Wang J, Zhao B, Li L et al (2014) Hydrothermal synthesis of K-ZSM-5 molecular sieve from potassium feldspar[J]. Journal of The Chinese Ceramic Society 42(3):340–348

    CAS  Google Scholar 

  52. Liu C, Su S, Yang J et al (2013) Synthesis of L-type molecular sieve from potassium feldspar powder[J]. J Chin Ceram Soc 41(8):1151–1157

    CAS  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank the Department of Chemical and Material Engineering, Bohai University,China and the Department Resources and Materials, Northeastern University at Qinghuangdao, China for providing the support to conduct the experimental work.

Funding

The National Natural Science Foundation of China (No. 51874079, 51804035), Natural Science Foundation of Liaoning Province (No. 2019-ZD-0507), Natural Science Foundation of Hebei Province (No. E2018501091), The Fundamental Research Funds for the Central Universities (No. N172302001, N182312007, N182304015), Qinhuangdao City University student of Science and Technology Innovation and Entrepreneurship Project (No.PZB1810008T-46, PZB1810008T-14), The Training Foundation for Scientific Research of Talents Project, Hebei Province (No.A2016005004), Hebei Province Higher Education Science and Technology Research Project (No.QN2017403), Department of Education Projects of Liaoning Province (No.LQ2020012), Open Research Subject of Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province (No. 9081200122006).

Author information

Authors and Affiliations

Authors

Contributions

Xu Zhao: Syntheses, experiment and material characterizations; Xiaolong Bi: Formulation, analyzing the whole data given in the manuscript and editing the whole manuscript; other author: Supervision and guidance.

Corresponding authors

Correspondence to Longjiao Chang or Shaohua Luo.

Ethics declarations

Conflict of Interest

Among all the collaborators on this manuscript, Xiaolong Bi and Xu Zhao have contributed equally to this work, so their should be considered co-first authors.

Consent to Participate

Informed consent was obtained from all individual participants included in the study.

Consent for Publication

The authors would like to give the consent to the publisher to publish this work.

Ethical Approval

(Not applicable).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Bi, X., Chang, L. et al. Using Potash Feldspar as Raw Material, Study on the Synthesis of Molecular Sieves with NaOH-Na2CO3 Alkaline Auxiliary Agent. Silicon 14, 12645–12656 (2022). https://doi.org/10.1007/s12633-022-01980-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-022-01980-5

Keywords

Navigation