Skip to main content
Log in

Reciprocating Wear Behavioural Analysis of Heat-treated Aluminium ZrO2/Al7Si0.3Mg Functionally Graded Composite Through Taguchi’s Optimization Method

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

This study investigates the reciprocating wear behaviour of heat-treated ZrO2 reinforced Al7Si0.3Mg functionally graded composite under unlubricated conditions by varying the heat treatment conditions and applied load using Taguchi’s Design of Experiment methodology. The independent parameters chosen were ageing temperature (145, 165, 185 °C), ageing time (8, 10, 12 h), and applied load (20, 40, 60 N), whereas specific wear rate was the response parameter, as determined through Taguchi’s L27 Orthogonal Array. Wear performance was assessed using a pin-on-flat plate linear reciprocating tribometer. Statistical analysis and the percentage contribution of each process variable to the wear rate characteristics and their importance to the tribological behaviour was defined through ANOVA. Optimum wear rate was obtained at a parametric combination of 20 N load, 165 °C ageing temperature, and 10 h ageing time. The confirmation studies revealed an error percentage of 6 ± 2.5% for heat-treated composite when comparing the performance measures derived by optimal parameter values with experimental data. Analysis revealed that ageing temperature was the most influential factor, followed by applied load and ageing time. Atomic force microscopy and worn morphology analysis on the heat-treated composite revealed severe wear at extreme ageing and applied loads, and mild wear at optimum loading conditions. These composites are best suitable for pump parts and automotive piston-cylinder arrangements which involve reciprocating motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Mohamed MF, Yaknesh S, Radhakrishnan G, Mohankumar P (2020) Mater Today Proc 22:1203–1208. https://doi.org/10.1016/j.matpr.2019.12.122

    Article  CAS  Google Scholar 

  2. Kumar TS, Shalini S, Priyadharshini GS (2021) Silicon 13:1051–1058. https://doi.org/10.1007/s12633-020-00492-4

    Article  CAS  Google Scholar 

  3. Kumar H, Vashista M, Yusufzai MZK (2018) Trans Indian Inst Met 71(8):2025–2033. https://doi.org/10.1007/s12666-018-1335-7

    Article  CAS  Google Scholar 

  4. Samal P, Vundavilli PR, Meher A, Mahapatra MM (2020) J Manuf Process 59:131–152. https://doi.org/10.1016/j.jmapro.2020.09.010

    Article  Google Scholar 

  5. Jojith R, Radhika N (2019) Mater Res Express 6(11):1165c2. https://doi.org/10.1088/2053-1591/ab4dd7

    Article  Google Scholar 

  6. Kumar TS, Nampoothiri J, Shalini S (2022) Silicon. https://doi.org/10.1007/s12633-021-01597-0

  7. El-Galy IM, Saleh BI, Ahmed MH (2019) SN Appl Sci 1(11):1–23. https://doi.org/10.1007/s42452-019-1413-4

    Article  Google Scholar 

  8. Pradeep AD, Rameshkumar T (2021) Mater Today Proc 45(2):729–734. https://doi.org/10.1016/j.matpr.2020.02.764

    Article  CAS  Google Scholar 

  9. Radhika N, Raghu R (2015) Int J Mater Res 106(11):1174–1181. https://doi.org/10.3139/146.111293

    Article  CAS  Google Scholar 

  10. Ambigai R, Prabhu S (2021) Silicon :1–12. https://doi.org/10.1007/s12633-021-01050-2

  11. Saleh BI, Ahmed MH (2020) Met Mater Int 26(9):1430–1440. https://doi.org/10.1007/s12540-019-00391-3

    Article  CAS  Google Scholar 

  12. Kumar B, Mer KKS, Prasad L (2019) Trends Mater Eng :1–11. https://doi.org/10.1007/978-981-13-9016-6_1

  13. Savaş Ö (2020) Ind Lubr Tribol 72(10):1147–1152. https://doi.org/10.1108/ILT-12-2019-0538

    Article  Google Scholar 

  14. Vijaya Kumar P, Jebakani D, Velmurugan C, Senthilkumar V (2022) Silicon 14(3):1247–1252. https://doi.org/10.1007/s12633-020-00933-0

    Article  CAS  Google Scholar 

  15. Jojith R, Radhika N (2019) Mater Res Express 6(9):0965b8. https://doi.org/10.1088/2053-1591/ab1039

    Article  CAS  Google Scholar 

  16. Roseline S, Paramasivam V (2019) J Alloys Compd 799:205–215. https://doi.org/10.1016/j.jallcom.2019.05.185

    Article  CAS  Google Scholar 

  17. Harsha RN, Kulkarni MV, Babu BS (2020) Mater Today Proc 26(2):3100–3106. https://doi.org/10.1016/j.matpr.2020.02.641

    Article  CAS  Google Scholar 

  18. Patil IS, Rao SS, Herbert MA, Goudar DM (2021) Adv Mater Process Technol :1–27. https://doi.org/10.1080/2374068X.2021.1927648

  19. Savaş Ö (2020) Mater Today Commun 23:100920. https://doi.org/10.1016/j.mtcomm.2020.100920

    Article  CAS  Google Scholar 

  20. Singh SP, Geethan KAV, Elilraja D, Prabhuram T, Durairaj JI (2020) Mater Today Proc 22:2824–2831. https://doi.org/10.1016/j.matpr.2020.03.414

    Article  CAS  Google Scholar 

  21. Ekka KK, Chauhan SR (2015) Arab J Sci Eng 40(2):571–581. https://doi.org/10.1007/s13369-014-1528-2

    Article  CAS  Google Scholar 

  22. Priyanka Muddamsetty LV, Radhika N (2016) Tribol Ind 38(1)

  23. Rajeev VR, Dwivedi DK, Jain SC (2010) Tribol Int 43(8):1532–1541. https://doi.org/10.1016/j.triboint.2010.02.014

    Article  CAS  Google Scholar 

  24. Rajeev VR, Dwivedi DK, Jain SC (2011) J Mater Eng Perform 20(3):368–376. https://doi.org/10.1007/s11665-010-9683-4

    Article  CAS  Google Scholar 

  25. Yang X, Barekar NS, Ji S, Dhindaw BK, Fan Z (2020) J Mater Process Technol 279:116580. https://doi.org/10.1016/j.jmatprotec.2019.116580

    Article  CAS  Google Scholar 

  26. Patil IS, Rao SS, Herbert MA, Kushwaha R (2021) Aust J Mech Eng :1–19. https://doi.org/10.1080/14484846.2021.1913872

  27. Gomes JR, Ramalho A, Gaspar MC, Carvalho SF (2005) Wear 259:545–552. https://doi.org/10.1016/j.wear.2005.02.088

    Article  CAS  Google Scholar 

  28. Gómez de Salazar JM, Barrena MI (2004) Wear 256:286–293. https://doi.org/10.1016/S0043-1648(03)00389-2

    Article  CAS  Google Scholar 

  29. Mohandas A, Radhika N (2017) Tribol Ind 39(2)

  30. Beroual S, Boumerzoug Z, Paillard P, Borjon-Piron Y (2019) J Alloys Compd 784:1026–1035. https://doi.org/10.1016/j.jallcom.2018.12.365

    Article  CAS  Google Scholar 

  31. Sathyaseelan B, Manikandan E, Baskaran I, Senthilnathan K, Sivakumar K, Moodley MK, Ladchumananandasivam R, Maaza M (2017) J Alloys Compd 694:556–559. https://doi.org/10.1016/j.jallcom.2016.10.002

    Article  CAS  Google Scholar 

  32. Askari E, Mehrali M, Metselaar IHSC, Kadri NA, Rahman MM (2012) J Mech Behav Biomed Mater 12:144–150. https://doi.org/10.1016/j.jmbbm.2012.02.029

    Article  CAS  Google Scholar 

  33. Kumar PV, Jebakani D, Velmurugan C, Senthilkumar V (2021) Silicon :1–6. https://doi.org/10.1007/s12633-020-00933-0

  34. Anilkumar V, Shankar KV, Balachandran M, Joseph J, Nived S, Jayanandan J, Jayagopan J, Balaji US (2021) Tribol Ind 43(4):590. https://doi.org/10.24874/ti.988.10.20.04

    Article  Google Scholar 

  35. Radhika N, Jojith R, Thiagarajan NS, Ruthraprakash M (2020) Tribol Indu 42(3):513–527. https://doi.org/10.24874/ti.854.02.20.08

    Article  Google Scholar 

  36. Vettivel SC, Selvakumar N, Narayanasamy R, Leema N (2013) Mater Des 50:977–996. https://doi.org/10.1016/j.matdes.2013.03.072

    Article  CAS  Google Scholar 

  37. Baradeswaran A, ElayaPerumal A, Franklin Issac R (2013) Proced Eng 64:973–982. https://doi.org/10.1016/j.proeng.2013.09.174

    Article  CAS  Google Scholar 

  38. Cruz KS, Meza ES, Fernandes FA, Quaresma JM, Casteletti LC, Garcia A (2010) Metall Mater Trans A 41(4):972–984. https://doi.org/10.1007/s11661-009-0161-2

    Article  CAS  Google Scholar 

  39. Prasad CV, Rao KM (2018) Mater Today Proc 5(13):26843–26849. https://doi.org/10.1016/j.matpr.2018.08.166

    Article  CAS  Google Scholar 

  40. Dey D, Bhowmik A, Biswas A (2020) Silicon 14:1–11. https://doi.org/10.1007/s12633-020-00757-y

    Article  CAS  Google Scholar 

  41. Toptan F, Kerti I, Rocha LA (2012) Wear 290:74–85. https://doi.org/10.1016/j.wear.2012.05.007

    Article  CAS  Google Scholar 

  42. Kumar GV, Rao CSP, Selvaraj N (2012) Compos Part B Eng 43(3):1185–1191. https://doi.org/10.1016/j.compositesb.2011.08.046

    Article  CAS  Google Scholar 

  43. Lashgari HR, Zangeneh S, Shahmir H, Saghafi M, Emamy M (2010) Mater Des 31(9):4414–4422. https://doi.org/10.1016/j.matdes.2010.04.034

    Article  CAS  Google Scholar 

  44. Menezes PL, Kailas SV (2009) Wear 266(1–2):103–109. https://doi.org/10.1016/j.wear.2008.05.008

    Article  CAS  Google Scholar 

  45. Sam M, Radhika N (2021) Silicon 13(8):2671–2687. https://doi.org/10.1007/s12633-020-00623-x

    Article  CAS  Google Scholar 

  46. Sharma S, Nanda T, Pandey OP (2019) Wear 426:27–36. https://doi.org/10.1016/j.wear.2018.12.065

    Article  CAS  Google Scholar 

  47. Kumar CAV, Rajadurai JS (2016) Trans Nonferrous Met Soc China 26(1):63–73. https://doi.org/10.1016/S1003-6326(16)64089-X

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by Aeronautics Research and Development Board: [Grant Number ARDB/01/2031877/M/1].

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Jojith R. The first draft of the manuscript was written by Jojith R, and Radhika N and M. Govindaraju commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to N. Radhika.

Ethics declarations

Conflict of Interest

The authors have no relevant financial or non-financial interests to disclose.

Ethics Approval

Not Applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jojith, R., Radhika, N. & Govindaraju, M. Reciprocating Wear Behavioural Analysis of Heat-treated Aluminium ZrO2/Al7Si0.3Mg Functionally Graded Composite Through Taguchi’s Optimization Method. Silicon 14, 11337–11354 (2022). https://doi.org/10.1007/s12633-022-01862-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-022-01862-w

Keywords

Navigation