Skip to main content
Log in

UWBG AlN/β-Ga2O3 HEMT on Silicon Carbide Substrate for Low Loss Portable Power Converters and RF Applications

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Ultra-wide bandgap (Eg > 3.4 eV) channel HEMTs are attractive choice for next generation power electronics. In recent years, β-Ga2O3 based field effect transistors are demonstrating excellent device performance due to its high breakdown field (Ecr ~ 8 MV/cm) and good transport properties. We report DC and RF characteristics of AlN/β-Ga2O3 HEMTs on Silicon Carbide (SiC) substrate. Compared with conventional III-nitride channel-based HEMTs, the AlN/β-Ga2O3 HEMT shows larger 2DEG (two-dimensional electron gas) density, improved drain current density, and breakdown voltage with low on-resistance. The gate field plate AlN/β-Ga2O3 HEMT with gate length (LG) of 800 nm and gate-drain (LGD) distance of 1 μm, and source-drain distance (LSD) of 2.6 μm shows ON-state current density (IDS) of 0.6 A/mm, transconductance (gm) of 288 mS/mm, blocking voltage (VBR) of 509 V, on-resistance (Ron) of 1.13 Ω.mm, current gain cut-off frequency (FT) of 27.1 GHz, power gain cut-off frequency (FMAX) of 72.3 GHz, and Johnson Figure of merit (JFoM = VBR× FT) of 13.793 THz.V. Moreover, the proposed HEMT exhibits very low switching delay of 3.5 pS, and switching loss of 1.9 × 10−16 J. These findings reveal that the proposed AlN/β-Ga2O3 HEMTs on SiC substrate are suitable candidates for future portable low switching loss power converters and RF applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Meneghini M, De Santi C, Abid I et al (2021) GaN-based power devices: physics, reliability, and perspectives. J Appl Phys 130(181101):181101. https://doi.org/10.1063/5.0061354

    Article  CAS  Google Scholar 

  2. Zeng F, An JX, Zhou G, Li W, Wang H, Duan T, Jiang L, Yu H (2018) A comprehensive review of recent Progress on GaN high Electron mobility transistors: devices, Fabrication and Reliability. Electronics 7:377. https://doi.org/10.3390/electronics7120377

    Article  CAS  Google Scholar 

  3. Ma C-T, Gu Z-H (2019) Review of GaN HEMT applications in power converters over 500 W. Electronics 8:1401. https://doi.org/10.3390/electronics8121401

    Article  CAS  Google Scholar 

  4. Husna Hamza K, Nirmal D (2019) A review of GaN HEMT broad band power amplifiers. Int J Electron Commun. https://doi.org/10.1016/j.aeue.2019.153040

  5. Nanjo T, Takeuchi M, Suita M, Abe Y, Oishi T, Tokuda Y, Aoyagi Y (2008) First operation of AlGaN channel high electron mobility transistors. Appl Phys Express:011101. https://doi.org/10.1143/APEX.1.011101

  6. Nanjo T, Takeuchi M, Suita M, Oishi T, Abe Y, Tokuda Y, Aoyagi Y (2008) Remarkable breakdown voltage enhancement in AlGaN channel high electron mobility transistors. Appl Phys Lett 92(263502):263502. https://doi.org/10.1063/1.2949087

    Article  CAS  Google Scholar 

  7. Nanjo T, Imai A, Suzuki Y, Abe Y, Oishi T, Suita M, Yagyu E, Tokuda Y (2013) AlGaN Channel HEMT with extremely high breakdown voltage. IEEE Trans Electron Devices 60(3):1046–1053. https://doi.org/10.1109/TED.2012.2233742

    Article  CAS  Google Scholar 

  8. Bajaj S, Akyol F, Krishnamoorthy S, Zhang Y, Rajan S (2016) AlGaN channel field effect transistors with graded heterostructure ohmic contacts Appl. Phys Lett 109(133508). https://doi.org/10.1063/1.4963860

  9. Baca AG, Armstrong AM, Allerman AA, Douglas EA, Sanchez CA, King MP, Coltrin ME, Fortune TR, Kaplar RJ (2016) An AlN/Al0.85Ga0.15N high electron mobility transistor. Appl Phys Lett 109(033509):033509. https://doi.org/10.1063/1.4959179

    Article  CAS  Google Scholar 

  10. Zhang W, Zhang J, Xiao M, Zhang L, Hao Y (2018) High breakdown-voltage (>2200 V) AlGaN-channel HEMTs with Ohmic/Schottky hybrid drains. IEEE J Electron Devices Soc 6:931–935. https://doi.org/10.1109/JEDS.2018.2864720

    Article  CAS  Google Scholar 

  11. Baca AG et al (2019) RF performance of Al0.85Ga0.15N/Al0.70Ga0.30N high electron mobility transistors with 80-nm Gates. IEEE Electron Device Lett 40(1):17–20. https://doi.org/10.1109/LED.2018.2880429

    Article  CAS  Google Scholar 

  12. Zhang Y, Li Y, Wang J, Shen Y, du L, Li Y, Wang Z, Xu S, Zhang J, Hao Y (2020) High-performance AlGaN double channel HEMTs with improved drain current density and high breakdown voltage. Nanoscale Res Lett 15:114. https://doi.org/10.1186/s11671-020-03345-6

    Article  CAS  Google Scholar 

  13. Pearton SJ, Yang J, Cary PH, Ren F, Kim J, Tadjer MJ, Mastro MA (2018) A review of Ga2O3 materials, processing, and devices. Appl Phys Rev 5:011301. https://doi.org/10.1063/1.5006941

    Article  CAS  Google Scholar 

  14. Kalarickal NK, Xia Z, McGlone JF, Liu Y, Moore W, Arehart AR, Ringel SA, Rajan S (2020) High electron density β-(Al0.17Ga0.83)2O3/Ga2O3 modulation doping using an ultra-thin (1 nm) spacer layer. J Appl Phys 127:215706. https://doi.org/10.1063/5.0005531

    Article  CAS  Google Scholar 

  15. Galazka Z Beta-Ga2O3 for wide-bandgap electronics and optoelectronics 2018. Semicond Sci Technol 33:113001. https://doi.org/10.1088/1361-6641/aadf78

  16. Mun JK, Cho K, Chang W, Jung H-W, Do J (2019) 2.32 kV breakdown voltage lateral β-Ga2O3 MOSFETs with source-connected field plate. ECS J Solid State Scie Technol 8(7):Q3079–Q3082

    Article  CAS  Google Scholar 

  17. Singh R, Lenka TR, Velpula RT, Jain B, Bui HQT, Nguyen HPT (2020) A novel β-Ga2O3 HEMT with fT of 166 GHz and X-band POUT of 2.91 W/mm. Int J Numer Model El 34:e2794. https://doi.org/10.1002/jnm.2794

    Article  Google Scholar 

  18. Ge M, Li Y, Zhu Y, Chen D, Wang Z, Tan S (2021) An improved design for e-mode AlGaN/GaN HEMT with gate stack β-Ga2O3/p-GaN structure. J Appl Phys 130(035703):035703. https://doi.org/10.1063/5.0051274

    Article  CAS  Google Scholar 

  19. Tetzner K, Hilt O, Popp A (2020) Saud bin Anooz, Joachim Würfl, challenges to overcome breakdown limitations in lateral β-Ga2O3 MOSFET devices. Microelectron Reliab 114:113951. https://doi.org/10.1016/j.microrel.2020.113951

    Article  CAS  Google Scholar 

  20. Kamimura T, Nakata Y, Higashiwaki M (2020) Delay-time analysis in radio-frequency β-Ga2O3 field effect transistors. Appl Phys Lett 117(253501):253501. https://doi.org/10.1063/5.0029530

    Article  CAS  Google Scholar 

  21. Revathy A, Boopathi CS, Khalaf OI, Romero CAT (2022) Investigation of AlGaN Channel HEMTs on β-Ga2O3 substrate for high-power electronics. Electronics 11:225. https://doi.org/10.3390/electronics11020225

    Article  CAS  Google Scholar 

  22. Konishi K, Goto K, Murakami H, Kumagai Y, Kuramata A, Yamakoshi S, Higashiwaki M (2017) 1-kV vertical Ga2O3 field-plated Schottky barrier diodes. Appl Phys Lett 110(10):103506

    Article  Google Scholar 

  23. Hu Z (2018) Kazuki Nomoto, Wenshen Li, Nicholas Tanen, Kohei Sasaki, Akito Kuramata, Tohru Nakamura, Debdeep Jena, and Huili grace Xing. Enhancement-mode Ga2O3 vertical transistors with breakdown voltage> 1 kV. IEEE Electron Device Lett 39(6):869–872

    Article  CAS  Google Scholar 

  24. Krishnamoorthy S, Xia Z, Bajaj S, Brenner M, Rajan S (2017) Delta-doped β-gallium oxide field-effect transistor. Appl Phys Express 10(5):051102

    Article  Google Scholar 

  25. Higashiwaki M, Sasaki K, Kuramata A, Masui T, Yamakoshi S (2012) Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates. Appl Phys Lett 100(1):013504

    Article  Google Scholar 

  26. Muhammed MM, Roldan MA, Yamashita Y, Sahonta S-L, Ajia IA, Iizuka K, Kuramata A, Humphreys CJ, Roqan IS (2016) High-quality III-nitride films on conductive, transparent (2̅01)-oriented β-Ga2O3 using a GaN buffer layer. Sci Rep 6:29747

    Article  CAS  Google Scholar 

  27. Chang Y-C, Lee YJ, Chiu YN, Lin T-D, Wu SY, Chiu H-C, Kwo J, Wang Y-H, Hong M (2007) MBE grown high κ dielectrics Ga2O3 (Gd2O3) on GaN. J Cryst Growth 301:390–393

    Article  Google Scholar 

  28. Lee C-T, Chen H-W, Lee H-Y (2003) Metal–oxide–semiconductor devices using ga2O3 dielectrics on n-type GaN. Appl Phys Lett 82(24):4304–4306

    Article  CAS  Google Scholar 

  29. Bae J, Kim HW, Kang IH, Yang G, Kim J (2018) High breakdown voltage quasi-two-dimensional β-Ga2O3 field-effect transistors with a boron nitride field plate. Appl Phys Lett 112(12):122102

    Article  Google Scholar 

  30. Andrew J (2022) Green, β-Gallium oxide power electronics. APL Mater 10:029201. https://doi.org/10.1063/5.0060327

    Article  CAS  Google Scholar 

  31. Nepal N et al (2020) Heteroepitaxial growth of β-Ga2O3 films on SiC via molecular beam epitaxy. J Vac Sci Technol A 38:063406. https://doi.org/10.1116/6.0000452

    Article  CAS  Google Scholar 

  32. Lin C-H et al (2019) Single-crystal-Ga2O3/polycrystalline-SiC bonded substrate with low thermal and electrical resistances at the heterointerface. Appl Phys Lett 114(3):Art No 032103. https://doi.org/10.1063/1.5051720

    Article  CAS  Google Scholar 

  33. Kukushkin SA, Nikolaev VI, Osipov AV, Osipova EV, Pechnikov AI, Feoktistov NA (2016) Epitaxial gallium oxide on a SiC/Si substrate. Phys Solid State 58:1876–1881. https://doi.org/10.1134/S1063783416090201

    Article  CAS  Google Scholar 

  34. Xu W et al. (2019) First demonstration of waferscale heterogeneous integration of Ga2O3 MOSFETs on SiC and Si substrates by ion-cutting process. In: IEDM Tech Dig p. 12. https://doi.org/10.1109/IEDM19573.2019.8993501

  35. Osipov AV, Grashchenko AS, Kukushkin SA, Nikolaev VI, Osipova EV, Pechnikov AI, Soshnikov IP (2018) Structural and elastoplastic properties of β-Ga2O3 films grown on hybrid SiC/Si substrates. Contin Mech Thermodyn 30:1059–1068. https://doi.org/10.1007/s00161-018-0662-6

    Article  CAS  Google Scholar 

  36. Wang Y, Xu W, Han G, You T, Mu F, Hu H, Liu Y, Zhang X, Huang H, Suga T, Ou X, Ma X, Hao Y (2021) Channel properties of Ga2O3-on-SiC MOSFETs. IEEE Trans Electron Devices 68(3):1185–1189. https://doi.org/10.1109/TED.2021.3051135

    Article  CAS  Google Scholar 

  37. Russell SAO, Perez-Tomas A, McConville CF, Fisher CA, Hamilton DP, Mawby PA, Jennings MR (2017) Heteroepitaxial Beta-Ga2O3 on 4H-SiC for an FET with reduced self-heating. IEEE J Electron Devices Soc 5(4):256–261. https://doi.org/10.1109/JEDS.2017.2706321

    Article  CAS  Google Scholar 

  38. Singh R, Lenka TR, Panda DK, Velpula RT, Jain B, Bui HQT, Nguyen HPT (2020) The dawn of Ga2O3 HEMTs for high power electronics - a review. Mater Sci Semicond Process 119:105216. https://doi.org/10.1016/j.mssp.2020.105216

    Article  CAS  Google Scholar 

  39. Int SILVACO (2016) ATLAS User’s manual; Device Simulation Software: Santa Clara, CA, USA. Available online: https://www.silvaco.com. Accessed 08 March 2022

  40. Ibbetson JP, Fini PT, Ness KD, DenBaars SP, Speck JS, Mishra UK (2000) Polarization effects, surface states, and the source of electrons in AlGaN/GaN heterostructure field effect transistors. Appl Phys Lett 77(2):250–252

    Article  CAS  Google Scholar 

  41. Ghosh K, Singisetti U (2018) Impact ionization in β-Ga2O3. J Appl Phys 124(8):085707

    Article  Google Scholar 

  42. Esposto M, Chini A, Rajan S (2011) Analytical model for power switching GaN-based HEMT design. IEEE Trans Electron Devices 58(5):1456–1461. https://doi.org/10.1109/TED.2011.2112771

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Anil Neerukonda Institute of Technology and Sciences, Visakhapatnam, India-531 162 and SKP Engineering College, Thiruvannamalai, India-606 601 for providing the support and facility to carry out this research work.

Code Availability

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All the works in this paper have done together by S. Baskaran, M. Shunmugathammal, C. Sivamani, S. Ravi, P. Murugapandiyan, and N.Ramkumar.

Corresponding author

Correspondence to S. Baskaran.

Ethics declarations

Consent to Participate

Not applicable.

Consent for Publication

Not applicable as the manuscript does not contain any data from individual.

Conflict of Interest

The authors declare that there is no conflict of interest reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baskaran, S., Shunmugathammal, M., Sivamani, C. et al. UWBG AlN/β-Ga2O3 HEMT on Silicon Carbide Substrate for Low Loss Portable Power Converters and RF Applications. Silicon 14, 11079–11087 (2022). https://doi.org/10.1007/s12633-022-01846-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-022-01846-w

Keywords

Navigation