Skip to main content
Log in

Rice Husk-Derived Mesoporous Silica Nanostructure for Supercapacitors Application: a Possible Approach for Recycling Bio-Waste into a Value-Added Product

  • Short Communication
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

We synthesized mesoporous SiO2 nanomatrix using rice husks as a precursor through a facile thermal combustion process. XRD, FTIR, EDX, and TEM analyses were used to validate the produced mesoporous SiO2 nanomatrix. Electrochemical measurements were used to determine the specific capacitance of mesoporous SiO2 nanomatrix, and the results showed that the specific capacitances are 216, 204, 182, 163, 152, 142, 135, 133, 124.4, 124 F/g at current densities of 0.5, 1, 2, 4, 6, 8, 10, 12, 14, and 16 A/g. The benefit of impurities, as well as the large surface area and mesoporous structure of rice husk derived SiO2 nanostructures, allow Faradaic redox reactions at the electrode surface and the resulting supercapacitive behavior. This research might lead to a low-cost technique of producing supercapacitor electrodes using rice husk-derived SiO2 as a precursor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Data Availability

Data and materials will be made on request.

References

  1. Khan I, Saeed K, Khan I (2019) Nanoparticles: properties, applications and toxicities. Arab J Chem 12:908–931

    Article  CAS  Google Scholar 

  2. Baig N, Kammakakam I, Falath W (2021) Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges. Mater Adv 2:1821–1187

    Article  Google Scholar 

  3. Abid N, Khan AM, Shujait S, Chaudhary K, Ikram M, Imran M, Haider J, Khan M, Khan Q, Maqbool M (2022) Synthesis of nanomaterials using various top-down and bottom-up approaches, influencing factors, advantages, and disadvantages: a review. Adv Colloid Inter Sci 300:102597

    Article  CAS  Google Scholar 

  4. Bayda S, Adeel M, Tuccinardi T, Cordani M, Rizzolio F (2019) The history of nanoscience and nanotechnology: from chemical–physical applications to nanomedicine. Molecules. 25:112

    Article  PubMed Central  Google Scholar 

  5. Meier J, Schiotz J, Liu P, Norskov JK, Stimming U (2004) Nano-scale effects in electrochemistry. Chem Phys Lett 390:440–444

    Article  CAS  Google Scholar 

  6. Eftekhari A (2008) Nanostructured materials in electrochemistry. Wiley-VCH GmbH, Weinheim

    Book  Google Scholar 

  7. Erdemir F, Güler O, Çanakçı A (2021) Electroless nickel-phosphorus coated expanded graphite paper: binder-free, ultra-thin, and low-cost electrodes for high-performance supercapacitors. J Energy Storage 44:103364

    Article  Google Scholar 

  8. Rashidi S, Karimi N, Sunden B, Kim KC, Olabi AG, Mahian O (2022) Progress and challenges on the thermal management of electrochemical energy conversion and storage technologies: fuel cells, electrolysers, and supercapacitors. Prog Energy Combust Sci 88:100966

    Article  Google Scholar 

  9. Luo X, Morrin A, Killard A, Smyth M (2006) Application of nanoparticles in electrochemical sensors and biosensors. Electroanalysis 18:319–326

    Article  CAS  Google Scholar 

  10. Lu H, He B, Gao B (2021) Emerging electrochemical sensors for life healthcare. Eng Regen 2:175–181

    Google Scholar 

  11. Conway BE (1999) Electrochemical supercapacitors: scientific fundamentals and technological applications. Kluwer-Plenum, New York

    Book  Google Scholar 

  12. Raza W, Ali F, Raza N, Luo Y, Kim K, Yang J, Kumar S, Mehmood A, Kwon EE (2018) Recent advancements in supercapacitor technology. Nano Energy 52:441–473

    Article  CAS  Google Scholar 

  13. Aricò AS, Bruce P, Scrosati B, Tarascon JM, Schalkwijk W (2005) Nanostructured materials for advanced energy conversion and storage devices. Nature Mater 4:366–377

    Article  Google Scholar 

  14. Erdemir F, Tuzcu E, Bilgin S, Alver Ü, Çanakçı A (2021) Influence of fluorine doping of zinc oxide on its electrochemical performance in supercapacitors. Mater Chem Phy 259:124033

    Article  CAS  Google Scholar 

  15. Sajjad M (2021) Recent advances in SiO2 based composite electrodes for supercapacitor applications. J Inorg Organomet Polym 31:3221–3239 ISSN 0254-0584

    Article  CAS  Google Scholar 

  16. Prabha S, Durgalakshmi D, Rajendran S, Lichtfouse E (2021) Plant-derived silica nanoparticles and composites for biosensors, bioimaging, drug delivery and supercapacitors: a review. Environ Chem Lett 19:1667–1691

    Article  CAS  PubMed  Google Scholar 

  17. Laskowski Ł, Laskowska M, Vila N, Schabikowski M, Walcarius A (2019) Mesoporous silica-based materials for electronics-oriented applications. Molecules 24:2395

    Article  CAS  PubMed Central  Google Scholar 

  18. Vijayan R, Kumar GS, Karunakaran G, Surumbarkuzhali N, Prabhu S, Ramesh R (2020) Microwave combustion synthesis of tin oxide-decorated silica nanostructure using rice husk template for supercapacitor applications. J Mater Sci Mater Electron 31:5738–5745

    Article  CAS  Google Scholar 

  19. Ali GAM, Fouad OA, Makhlouf SA, Yusoff MM, Chong KF (2014) Co3O4/SiO2 nanocomposites for supercapacitor application. J Solid State Electrochem 18:2505–2512

    Article  CAS  Google Scholar 

  20. Huang HS, Chang KH, Suzuki N, Yamauchi Y, Hu CC, Wu KCW (2013) Evaporation-induced coating of hydrous ruthenium oxide on mesoporous silica nanoparticles to develop high-performance supercapacitors. Small 9:2520–2526

    Article  CAS  PubMed  Google Scholar 

  21. Joshi A, Lalwani S, Singh G, Sharma RK (2019) Highly oxygen deficient, bimodal mesoporous silica based supercapacitor with enhanced charge storage characteristics. Electrochim Acta 297:705–714

    Article  CAS  Google Scholar 

  22. Vijayan R, Srinivasan R, Kumar GS, Surumbarkuzhali N, Prabhu S, Ramesh R, Karunakaran G, Kolesnikov E, Kim M (2021) Synthesis of silver-integrated silica nanostructures using rice hulls and their electrochemical performance for supercapacitor application. J Mater Sci Mater Electron 32:17534–17544

    Article  CAS  Google Scholar 

  23. Pal A, Das T, Ghosh S, Nandi M (2020) Supercapacitor behaviour of manganese dioxide decorated mesoporous silica synthesized by rapid sol-gel inverse micelle method. Dalton Trans 49:12716–12730

    Article  CAS  PubMed  Google Scholar 

  24. Zhang Y, Zhao Y, Cao S, Yin Z, Cheng L, Wu L (2017) Design and synthesis of hierarchical SiO2@C/TiO2 hollow spheres for high-performance supercapacitors. ACS Appl Mater Interfaces 9:29982–29991

    Article  CAS  PubMed  Google Scholar 

  25. Javed M, Abbas SM, Siddiq M, Han D, Niu L (2018) Mesoporous silica wrapped with graphene oxide-conducting PANI nanowires as a novel hybrid electrode for supercapacitor. J Phys Chem Solids 113:220–228

    Article  CAS  Google Scholar 

  26. Cevik E, Gunday ST, Akhtar S, Yamani ZH, Bozkurt A (2019) Sulfonated hollow silica spheres as electrolyte store/release agents: high-performance supercapacitor applications. Energy Technol 7:1900511

    Article  CAS  Google Scholar 

  27. Bodie AR, Micciche AC, Atungulu GG, Rothrock MJ, Ricke SC (2019) Current trends of rice milling byproducts for agricultural applications and alternative food production systems. Front Sustain Food Syst 3:47

    Article  Google Scholar 

  28. Elkodous A et al (2021) Recent advances in waste-recycled nanomaterials for biomedical applications: waste-to-wealth. Nanotechnol Rev 10:1662–1739

    Article  CAS  Google Scholar 

  29. Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319

    Article  CAS  Google Scholar 

  30. Barrett EP, Joyner LG, Halenda PA (1951) The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J Am Chem Soc 73:373–380

    Article  CAS  Google Scholar 

  31. Erdemir F (2017) Study on particle size and X-ray peak area ratios in high energy ball milling and optimization of the milling parameters using response surface method. Measurement 112:53–60

    Article  Google Scholar 

  32. Ibrahim DM, El-Hemaly SA, Abdel-Kerim FM (1980) Study of rice-husk ash silica by infrared spectroscopy. Thermochim Acta 37:307–314

    Article  CAS  Google Scholar 

  33. Soltani N, Bahrami A, Pech-Canul MI, González LA (2015) Review on the physicochemical treatments of rice husk for production of advanced materials. Chem Eng J 264:899–935

    Article  CAS  Google Scholar 

  34. Yalcin N, Sevinc V (2001) Studies on silica obtained from rice husk. Ceram Int 27:219–224

    Article  CAS  Google Scholar 

  35. Araichimani P, Kumar GS, Prabu KM, Karunakaran G, Minh NV, Kolesnikov E, Gorshenkov MV (2021) Amorphous silica nanoparticles derived from biowaste via microwave combustion for drug delivery. Int J Appl Ceram Technol 18:583-589

Download references

Acknowledgements

G. Suresh Kumar would like to express his heartfelt gratitude to the management of K.S. Rangasamy College of Arts and Science (Autonomous), Tiruchengode for their continuous support. P. Araichimani and K.M. Prabu are grateful for the continuous support and encouragement from the management of Sri Vidya Mandir Arts and Science College, Uthangarai, for performing this research.

Funding

The authors from King Khalid University would like to express their gratitude to the Deanship of Scientific Research at King Khalid University, Abha, Saudi Arabia for funding this work through the Research Groups Program under Grant No. R.G.P.1/397/42.

Author information

Authors and Affiliations

Authors

Contributions

P. Araichimani: Conceptualization, Investigation, Methodology, Writing - Original Draft. K.M. Prabu: Supervision. G. Suresh Kumar: Validation, Writing-Review & Editing. Gopalu Karunakaran: Visualization, Formal analysis. S. Surendhiran: Characterization of materials. Mohd. Shkir: Characterization of materials, Review & Editing, S. AlFaify: Characterization of material.

Corresponding authors

Correspondence to K. M. Prabu or G. Suresh Kumar.

Ethics declarations

Ethics Approval

Not applicable

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Informed Consent

Not applicable.

Research Involving Human Participants and/or Animals

Not applicable.

Conflicts of Interest

Authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Araichimani, P., Prabu, K.M., Kumar, G.S. et al. Rice Husk-Derived Mesoporous Silica Nanostructure for Supercapacitors Application: a Possible Approach for Recycling Bio-Waste into a Value-Added Product. Silicon 14, 10129–10135 (2022). https://doi.org/10.1007/s12633-022-01699-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-022-01699-3

Keywords

Navigation