Skip to main content
Log in

Enhanced Efficiency of Graphene-Silicon Schottky Junction Solar Cell through Pyramid Arrays Texturation

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Graphene/silicon (Gr/Si) Schottky junction solar cells have attracted extensive research interest due to their simple structure and potential low-cost. Surface texturing is an important part of high-efficiency solar cells. In this paper, the effects of TMAH concentration, IPA concentration and etching time on the structure and anti-reflection ability of silicon pyramid array (SiPa) were systematically studied to obtain uniform and reliable pyramid array. Under the optimized conditions, a large scale SiPa with uniform size distribution was obtained and applied to Gr/Si solar cells. The results show that the TMAH etched SiPa has a better Schottky junction contact between graphene and the SiPa surface, and the SiPa can further improves the ability of collecting photogenerated carriers. Compared with Gr/Si solar cells, the power conversion efficiency (PCE) of Gr/SiPa device is 1.66 times higher than that of Gr/Si solar cells. Finally, Gr/SiPa devices with PCE of 5.67% is successfully obtained by HNO3 doping. This work proposes a new strategy for TMAH etching SiPa to improve the performance of Gr/Si solar cells.

Highlights

The effects of TMAH concentration, IPA concentration and etching time on silicon pyramid structure were studied.

Uniform silicon pyramid arrays with low reflectivity were prepared.

The results show that the TMAH etched SiPa has a better Schottky junction contact between graphene and the SiPa surface.

The PCE of Gr/SiPa solar cells could reach up to 5.67%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The authors declare that the data and materials for this work are available.

Code Availability

Not applicable.

References

  1. Xi F, Li S, Ma W, Chen Z, Wei K, Wu J (2021) A review of hydrometallurgy techniques for the removal of impurities from metallurgical-grade silicon. Hydrometallurgy 201(9):105553

    Article  CAS  Google Scholar 

  2. Luo Q, Ma H, Hou Q, Li Y, Ren J, Dai X, Yao Z, Zhou Y, Xiang L, Du H, He H, Wang N, Jiang K, Lin H, Zhang H, Guo Z (2018) All-carbon-electrode-based endurable flexible perovskite solar cells. Adv Func Mater 28(11):1706777

    Article  Google Scholar 

  3. Powell DM, Winkler MT, Choi HJ, Simmons CB, Needleman DB, Buonassisi T (2012) Crystalline silicon photovoltaics: a cost analysis framework for determining technology pathways to reach baseload electricity costs. Energy Environ Sci 5(3):5874–5883

    Article  Google Scholar 

  4. Taguchi M, Yano A, Tohoda S, Matsuyama K, Nakamura Y, Nishiwaki T, Fujita K, Maruyama E (2013) 24.7% record efficiency hit solar cell on thin silicon wafer. IEEE J Photovoltaics 4(1):96–99

    Article  Google Scholar 

  5. Wang Y, Xia Z, Liu L, Xu W, Yuan Z, Zhang Y (2017) The Light-Induced Field-Effect Solar Cell Concept-Perovskite Nanoparticle Coating Introduces Polarization Enhancing Silicon Cell Efficiency. Adv Mater 29(18):1606370.1-1606370.7

    Article  Google Scholar 

  6. Liu J, Ji Y, Liu Y, Xia Z, Han Y, Li Y, Sun B (2017) Doping-Free Asymmetrical Silicon Heterocontact Achieved by Integrating Conjugated Molecules for High Efficient Solar Cell. Adv Energy Mater 1700311:1–7

    Google Scholar 

  7. Battaglia C, Cuevasb A, De Wolf S (2016) High-efficiency crystalline silicon solar cells: status and perspectives. Energy Environ Sci Ees 9:1552–1576

    Article  CAS  Google Scholar 

  8. Li C, He Z, Wang Q, Liu J, Li S, Chen X, Ma W, Chang Y (2021) Performance improvement of PEDOT:PSS/N-Si heterojunction solar cells by alkaline etching. SILICON 1:1–9

    CAS  Google Scholar 

  9. Liu J, Yao Y, Xiao S, Gu X (2018) Review of status developments of high-efficiency crystalline silicon solar cells. J Phys D Appl Phys 51(12):123001

    Article  Google Scholar 

  10. Xu D, Yu X, Gao D, Li C, Zhong M, Zhu H, Yuan S, Lin Z, Yang D (2016) Self-generation of a quasi p–n junction for high efficiency chemical-doping-free graphene/silicon solar cells using a transition metal oxide interlayer. J Mater Chem A 4(27):10558–10565

    Article  CAS  Google Scholar 

  11. Chen CC, Aykol M, Chang CC, Levi AFJ, Cronin Stephen B (2011) Graphene-silicon Schottky diodes. Nano Lett 11(5):1863–1867

    Article  CAS  PubMed  Google Scholar 

  12. Luongo G, Grillo A, Urban F, Giubileo F, Bartolome AD (2019) Effect of silicon doping on graphene/silicon Schottky photodiodes. Mater Today Proc 20:82–86

    Article  Google Scholar 

  13. Behura SK, Wang C, Wen Y, Berry V (2019) Graphene–semiconductor heterojunction sheds light on emerging photovoltaics. Nat Photonics 13(5):312–318

    Article  CAS  Google Scholar 

  14. Kumar P (2021) Performance Analysis of Double Gate Dielectric Modulation In Schottky FET As Biomolecule Sensor[J]. silicon Published online

  15. Wu C, Zhou W, Yao N, Xu X, Qu Y, Zhang Z, Wu J, Jiang L, Huang Z, Chu J (2019) Silicon-based high sensitivity of room-temperature microwave and sub-terahertz detector[J]. Appl Phys Express 12(5):052013.1-052013.5

    Article  Google Scholar 

  16. Kumar P, Bhowmick B (2017) 2D analytical model for surface potential based electric field and impact of wok function in DMG SB MOSFET[J]. Superlattices Microstruct 109(9):805–814

    Article  CAS  Google Scholar 

  17. Kumar P, Bhowmick B (2020) Source-Drain Junction Engineering Schottky Barrier MOSFETs and their Mixed Mode Application[J]. SILICON 12(4):821–830

    Article  CAS  Google Scholar 

  18. Kumar P, Bhowmick B (2017) 2-D analytical modeling for electrostatic potential and threshold voltage of a dual work function gate Schottky barrier MOSFET[J]. J Comput Electron 16(3):1–8

    Article  CAS  Google Scholar 

  19. Geng C, Shang Y, Qiu JJ, Wang Q, Chen X, Li S, Ma W, Fan H, Omer AAA, Chen R (2020) Carbon quantum dots interfacial modified graphene/silicon Schottky barrier solar cell. J Alloys Compounds 835:155268

    Article  CAS  Google Scholar 

  20. Zhang X, Xie C, Jie J, Zhang X, Wu Y, Zhang W (2013) High-efficiency graphene/Si nanoarray Schottky junction solar cells via surface modification and graphene doping. J Mater Chem A 1(22):6593–6601

    Article  CAS  Google Scholar 

  21. Kong X, Zhang L, Liu B, Gao H, Zhang Y, Yang H, Song X (2019) Graphene/Si Schottky solar cells: a review of recent advances and prospects. RSC Adv 9(2):863–877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li S, Ma W, Chen X, Xie K, Li Y, He X, Yang X, Lei Y (2016) Structure and antireflection properties of SiNWs arrays form mc-Si wafer through Ag-catalyzed chemical etching. Appl Surf Sci 369(30):232–240

    Article  CAS  Google Scholar 

  23. Ozdemir B, Kulakci M, Turan R, Unalan HE (2011) Effect of electroless etching parameters on the growth and reflection properties of silicon nanowires. Nanotechnology 22(15):155606

    Article  PubMed  Google Scholar 

  24. Geng X, Li M, Zhao L, Bohn PW (2011) Metal-assisted chemical etching using tollen’s reagent to deposit silver nanoparticle catalysts for fabrication of quasi-ordered silicon micro/nanostructures. J Electron Mater 40(12):2480–2485

    Article  CAS  Google Scholar 

  25. Fan G, Zhu H, Wang K, Wei J, Li X, Shu Q, Guo N, Wu D (2011) Graphene/silicon nanowire Schottky junction for enhanced light harvesting. ACS Appl Mater Interfaces 3(3):721–725

    Article  CAS  PubMed  Google Scholar 

  26. Feng T, Xie D, Lin Y, Zang Y, Ren T, Song R, Zhao H, Tian H, Li X, Zhu H, Liu L (2011) Graphene based Schottky junction solar cells on patterned silicon-pillar-array substrate. Appl Phys Lett 99:233505–233511

    Article  Google Scholar 

  27. Dong HS, Ju HK, Kim JH, Chan WJ, Sang WS, Lee HS, Kim S, Choi SH (2017) Graphene/porous silicon Schottky-junction solar cells. J Alloy Compd 715:291–296

    Article  Google Scholar 

  28. Sarro PM, Brida D, Vlist W, Brida S (2000) Effect of surfactant on surface quality of silicon microstructures etched in saturated TMAHW solutions. Sens Actuators A 85(1–3):340–345

    Article  CAS  Google Scholar 

  29. Swarnalatha V, Rao AN, Ashok A, Singh S, Pal P (2017) Modified TMAH based etchant for improved etching characteristics on Si{100} wafer. J Micromech Microeng 27(8):085003

    Article  Google Scholar 

  30. Sun Z, Raji A, Zhu Y, Xiang C, Yan Z, Kittrell C, Samuel ELG, Tour JM (2012) Large-Area Bernal-Stacked Bi-, Tr-, and Tetralayer Graphene. ACS Nano 6(11):9790–9796

    Article  CAS  PubMed  Google Scholar 

  31. Qi JL, Zheng WT, Zheng XH, Wang X, Tian HW (2011) Relatively low temperature synthesis of graphene by radio frequency plasma enhanced chemical vapor deposition. Appl Surf Sci 257(15):6531–6534

    Article  CAS  Google Scholar 

  32. Terasawa T, Saiki K (2012) Growth of graphene on Cu by plasma enhanced chemical vapor deposition. Carbon 50(3):869–874

    Article  CAS  Google Scholar 

  33. Ou WY, Zhang Y, Li H, Zhao L, Zhou C, Diao H, Liu M, Lu W, Zhang J, Wang W (2010) Texturization of mono-crystalline silicon solar cells in TMAH without the addition of surfactant. J Semicond 31(10):106002

    Article  Google Scholar 

  34. Wang S, Weil BD, Li Y, Wang KX, Garnett E, Fan S, Cui Y (2013) Large-area free-standing ultrathin single-crystal silicon as processable materials. Nano Lett 13(9):4393–4398

    Article  CAS  PubMed  Google Scholar 

  35. Biswas K, Kal S (2006) Etch characteristics of KOH, TMAH and dual doped TMAH for bulk micromachining of silicon. Microelectron J 37(6):519–525

    Article  CAS  Google Scholar 

  36. Chen PH, Peng HY, Hsieh CM, Chyu MK (2001) The characteristic behavior of TMAH water solution for anisotropic etching on both Silicon substrate and SiO2 layer. Sens Actuators A 93(2):132–137

    Article  CAS  Google Scholar 

  37. Fan Y, Han P, Peng L, Xing Y, Ye Z, Hu S (2013) Differences in etching characteristics of TMAH and KOH on preparing inverted pyramids for silicon solar cells. Appl Surf Sci 264:761–766

    Article  CAS  Google Scholar 

  38. Zubel I, Rola K, Kramkowska M (2011) The effect of isopropyl alcohol concentration on the etching process of Si-substrates in KOH solutions. Sens Actuators A 171(2):436–445

    Article  CAS  Google Scholar 

  39. Zubel I, Kramkowska M (2001) The effect of isopropyl alcohol on etching rate and roughness of (100) Si surface etched in KOH and TMAH solutions. Sens Actuators A 93(2):138–147

    Article  CAS  Google Scholar 

  40. Orak I, Turut A, Toprak M (2015) The comparison of electrical characterizations and photovoltaic performance of Al/p-Si and Al/Azure C/p-Si junctions devices[J]. Synth Met 200:66–73

    Article  CAS  Google Scholar 

  41. Abdullah MF, Hashim AM (2019) Improved coverage of rGO film on Si inverted pyramidal microstructures for enhancing the photovoltaic of rGO/Si heterojunction solar cell[J]. Mater Sci Semicond Process 96:137–144

    Article  CAS  Google Scholar 

  42. Turut A (2021) Thermal sensitivity from current-voltage-measurement temperature characteristics in Au/n-GaAs Schottky contacts[J]. Turk J Phys 45(5):268–280

    CAS  Google Scholar 

  43. Xu D, Yu X, Zuo L, Yang D (2015) Interface engineering and efficiency improvement of monolayer graphene–silicon solar cells by inserting an ultra-thin LiF interlayer[J]. RSC Adv 5(58):46480–46484

    Article  CAS  Google Scholar 

  44. Turut A (2020) Oncurrent-voltage and capacitance-voltage characteristics of metal-semiconductor contacts[J]. Turk J Phys 44(4):302–347

    Article  Google Scholar 

  45. Karabulut A, Orak I, Turut A (2018) The photovoltaic impact of atomic layer deposited TiO2 interfacial layer on Si-based photodiodes[J]. Solid-State Electron 144(6):39–48

    Article  CAS  Google Scholar 

  46. Cheung SK, Cheung NW (1986) Extraction of Schottky diode parameters from forward current-voltage characteristics[J]. Appl Phys Lett 49(2):85–87

    Article  CAS  Google Scholar 

  47. Tataroglu A, Altindal S (2008) Analysis of interface states and series resistance of MIS Schottky diodes using the current–voltage (I–V) characteristics[J]. Microelectron Eng 85(1):233–237

    Article  CAS  Google Scholar 

  48. Turut A, Karabulut A, Ejderha K, Bıyıklı N (2015) Capacitance-conductance- current-voltage characteristics of atomic layer deposited Au/Ti/Al2O3/n-GaAs MIS structures[J]. Mater Sci Semicond Process 39:400–407

    Article  CAS  Google Scholar 

  49. Kumar P, Bhowmick B (2018) A physics-based threshold voltage model for hetero-dielectric dual material gate Schottky barrier MOSFET[J]. Int J Numer Model Electron Networks Devices Fields 31(5):2320

    Article  Google Scholar 

  50. Bartolomeo AD, Giubileo F, Luongo G, Iemmo L, Martucciello N, Niu G, Fraschke M, Skibitzki O, Schroeder T, Lupina G (2016) Tunable Schottky barrier and high responsivity in graphene/Si-nanotip optoelectronic device. 2D Materials 4(1):015024

    Article  Google Scholar 

  51. Xie C, Zhang X, Wu Y, Zhang X, Zhang X, Wang Y, Zhang W, Gao P, Han Y, Jie J (2013) Surface passivation and band engineering: a way toward high efficiency graphene–planar Si solar cells. J Mater Chem A 1(30):8567

    Article  CAS  Google Scholar 

  52. Jiao K, Wang X, Yu W, Chen Y (2014) Graphene oxide as an effective interfacial layer for enhanced graphene/silicon solar cell performance. J Mater Chem C 2:7715–7721

    Article  CAS  Google Scholar 

  53. Abdullah MF, Hashim AM (2019) Review and assessment of photovoltaic performance of graphene/Si heterojunction solar cells. J Mater Sci 54:911–948

    Article  CAS  Google Scholar 

  54. Kumar P, WasimArif BB (2018) Scaling of Dopant Segregation Schottky Barrier Using Metal Strip Buried Oxide MOSFET and its Comparison with Conventional Device[J]. SILICON 10:811–820

    Article  CAS  Google Scholar 

  55. Liu H, Liu Y, Zhu D (2011) Chemical doping of graphene. J Mater Chem 21(10):3335–3345

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support of this work from the National Natural Science Foundation of China (Grant No. 51974143, 51904134, 61764009, 51762043); National Key R&D Program of China (No. 2018YFC1901801, No. 2018YFC1901805); Major Science and Technology Projects in Yunnan Province (No. 2019ZE007, No. 202103AA080004, No. 202102AB080016); Key Project of Yunnan Province Natural Science Fund (No. 2018FA027); Yunnan Ten Thousand Talents Project (YNWR-QNBJ-2018-111) and the Program for Innovative Research Team in University of Ministry of Education of China (No. IRT_17R48).

Funding

Financial support of this work from the National Natural Science Foundation of China,Grant No. 51974143,Shaoyuan Li,51904134,Shaoyuan Li,61764009,Shaoyuan Li,51762043,Shaoyuan Li,National Key R&D Program of China,No. 2018YFC1901801,Shaoyuan Li,No. 2018YFC1901805,Shaoyuan Li,Major Science and Technology Projects in Yunnan Province,No. 2019ZE007,Ma Wenhui,No. 202103AA080004,Ma Wenhui,No. 202102AB080016,Ma Wenhui,Key Project of Yunnan Province Natural Science Fund,No. 2018FA027,Shaoyuan Li,Yunnan Ten Thousand Talents Project,YNWR-QNBJ-2018–111,Shaoyuan Li,the Program for Innovative Research Team in University of Ministry of Education of China,No. IRT_17R48,Shaoyuan Li

Author information

Authors and Affiliations

Authors

Contributions

Cheng Li: Data curation, Writing—original draft. Yichen Ma: Conceptualization. Xiyao Zhang: Software. Xiuhua Chen: Funding acquisition, Visualization, Investigation. Fengshuo Xi: Supervision, Writing -review & editing. Shaoyuan Li: Funding acquisition, Supervision, Writing -review & editing. Wenhui Ma: Funding acquisition, Supervision. Yuanchih Chang: Writing—review & editing.

Corresponding authors

Correspondence to Fengshuo Xi or Shaoyuan Li.

Ethics declarations

Ethics Approval

The authors declare that the manuscript is not currently being considered for publication in another journal.

Consent to Participate

I testify on behalf of all co-authors that our article submitted to Silicon.

Consent for Publication

The authors agree that the manuscript should be published in Silicon.

Conflicts of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Ma, Y., Zhang, X. et al. Enhanced Efficiency of Graphene-Silicon Schottky Junction Solar Cell through Pyramid Arrays Texturation. Silicon 14, 8765–8775 (2022). https://doi.org/10.1007/s12633-021-01579-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-021-01579-2

Keywords

Navigation