Skip to main content
Log in

Electrical and Dielectric Properties of the Natural Calcite and Quartz

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Since humanity has existed, natural materials have been used in our daily lives; they have been utilized as raw materials in manufacturing from the pin to the jet. Natural calcite and quartz are used as raw materials in various applications, including agriculture, cement, chemical and pharmaceutical, glass, ceramics, and optical fiber; however, the studies on the high-temperature dependence of their electrical and dielectric properties are still scarce and limited. Herein, the electrical and dielectric properties of the natural calcite and quartz have been investigated in the temperature range of 300–1000 K at different frequencies. The electrical conductivity results revealed that natural calcite and quartz appeared to be insulators with stable behavior up to 730 and 640 K, respectively; then, they behaved as semiconductors at higher temperatures. The results revealed the conduction mechanism in both samples seems to be by the charge carriers hopping at the lower temperatures then turning into polarons conduction at the higher temperatures. Both dielectric constant and dielectric loss of the natural calcite and quartz showed temperature-dependent behavior up to 700 K at the low frequencies. Then, they showed frequency-dependent behavior at high frequencies. The stable behavior of electrical and dielectric properties of natural calcite and quartz could make them candidate materials to be used as high-voltage power insulators up to a temperature of 700 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

There is no linked research data for this submission; all data have been included inside this work.

References

  1. Molina E, Cultrone G, Sebastián E, Alonso FJ, Carrizo L, Gisbert J, Buj O (2011) The pore system of sedimentary rocks as a key factor in the durability of building materials. Eng Geol 118(3):110–121. https://doi.org/10.1016/j.enggeo.2011.01.008

    Article  Google Scholar 

  2. Favero JS, Parisotto-Peterle J, Weiss-Angeli V, Brandalise RN, Gomes LB, Bergmann CP, dos Santos V (2016) Physical and chemical characterization and method for the decontamination of clays for application in cosmetics. Appl Clay Sci 124-125:252–259. https://doi.org/10.1016/j.clay.2016.02.022

    Article  CAS  Google Scholar 

  3. Manning DAC, Theodoro SH (2020) Enabling food security through use of local rocks and minerals. Extr Ind Soc 7(2):480–487. https://doi.org/10.1016/j.exis.2018.11.002

    Article  Google Scholar 

  4. Saeed A, Alomairy S, Sriwunkum C, Al-Buriahi MS (2021) Neutron and charged particle attenuation properties of volcanic rocks. Radiat Phys Chem 184:109454. https://doi.org/10.1016/j.radphyschem.2021.109454

    Article  CAS  Google Scholar 

  5. Cheon D-S, Park E-S, Park C-W, Park C (2008) A basic study for mechanical properties of domestic rocks and database construction. J Tunnel Underground Space 18(5):317–327

    Google Scholar 

  6. West TO, McBride AC (2005) The contribution of agricultural lime to carbon dioxide emissions in the United States: dissolution, transport, and net emissions. Agric Ecosyst Environ 108(2):145–154. https://doi.org/10.1016/j.agee.2005.01.002

    Article  CAS  Google Scholar 

  7. Shannon J, Howard IL, Cost VT (2017) Potential of Portland-limestone cement to improve performance of concrete made with high slag cement and fly ash replacement rates. J Test Eval 45(3):873–889

    Article  CAS  Google Scholar 

  8. Silva FS, Ribeiro CEG, Rodriguez RJS (2018) Physical and mechanical characterization of artificial stone with marble calcite waste and epoxy resin. J Materials Research 21

  9. Stepanov I, Borodianskiy K, Eliyahu-Behar A (2020) Assessing the quality of Iron ores for Bloomery smelting: laboratory experiments. Minerals 10(1). https://doi.org/10.3390/min10010033

  10. Barbalinardo M, Di Giosia M, Polishchuk I, Magnabosco G, Fermani S, Biscarini F, Calvaresi M, Zerbetto F, Pellegrini G, Falini G, Pokroy B, Valle F (2019) Retinoic acid/calcite micro-carriers inserted in fibrin scaffolds modulate neuronal cell differentiation. J Mat Chem B 7(38):5808–5813. https://doi.org/10.1039/C9TB01148J

    Article  CAS  Google Scholar 

  11. Lamar JE (1965) industrial minerals and metals of Illinois. Illinois state geological survey. Educational Series 8. Authority of State of Illinois

  12. Nazari S, Shafaei SZ, Gharabaghi M, Ahmadi R, Shahbazi B, Maoming F (2019) Effects of nanobubble and hydrodynamic parameters on coarse quartz flotation. Int J Min Sci Technol 29(2):289–295. https://doi.org/10.1016/j.ijmst.2018.08.011

    Article  Google Scholar 

  13. Halfpenny A (2019) Can the source location of a Coloured quartz gemstone be determined from non-destructive chemical analysis? Microsc Microanal 25(S2):2480–2481. https://doi.org/10.1017/S1431927619013138

    Article  Google Scholar 

  14. Fanderlik I (2013) Silica glass and its application. Elsevier

  15. Schneider H, Majdic A, Vasudevan R (1986) Kinetics of the quartz-Cristobalite transformation in refractory-grade silica materials. Mater Sci Forum 7:91–102. https://doi.org/10.4028/www.scientific.net/MSF.7.91

    Article  CAS  Google Scholar 

  16. Beall GH (1994) Industrial applications of silica. In: Heaney PJ, Prewitt CT, Gibbs GV (eds) Reviews in Mineralogy & Geochemistry, vol 29. De Gruyter, pp 469–506.. https://doi.org/10.1515/9781501509698-019

  17. Platias S, Vatalis KI, Charalampides G (2014) Suitability of Quartz Sands for different industrial applications. Procedia Econ Finance 14:491–498. https://doi.org/10.1016/S2212-5671(14)00738-2

    Article  Google Scholar 

  18. Abu Sharib ASAA, Abukhadra MR (2021) Stress-induced lattice imperfections: the principal motive in enhancing some Physico-chemical and electrical properties of some quartz varieties. Silicon 13(3):653–665. https://doi.org/10.1007/s12633-020-00458-6

    Article  CAS  Google Scholar 

  19. Sengwa R, Soni A (2008) Dielectric properties of some minerals of western Rajasthan. Indian J Radio Space Phys

  20. Kenyon WE (1984) Texture effects on megahertz dielectric properties of calcite rock samples. J Appl Phys 55(8):3153–3159. https://doi.org/10.1063/1.333315

    Article  Google Scholar 

  21. Zisser N, Kemna A, Nover G (2010) Relationship between low-frequency electrical properties and hydraulic permeability of low-permeability sandstones. Geophysics 75(3):E131–E141. https://doi.org/10.1190/1.3413260

    Article  Google Scholar 

  22. Jain H, Nowick AS (1982) Electrical conductivity of synthetic and natural quartz crystals. J Appl Phys 53(1):477–484. https://doi.org/10.1063/1.329949

    Article  CAS  Google Scholar 

  23. Hui KS, Zhang H, Li HP, Dai LD, Hu HY, Jiang JJ, Sun WQ (2015) Experimental study on the electrical conductivity of quartz andesite at high temperature and high pressure: evidence of grain boundary transport. Solid Earth 6(3):1037–1043. https://doi.org/10.5194/se-6-1037-2015

    Article  Google Scholar 

  24. Alraddadi S, Saeed A, Assaedi H (2020) Effect of thermal treatment on the structural, electrical, and dielectric properties of volcanic scoria. J Mater Sci-Mater Electron 31(14):11688–11699. https://doi.org/10.1007/s10854-020-03720-0

    Article  CAS  Google Scholar 

  25. Al-Buriahi MS, Alomairy S, Saeed A, Abouhaswa AS, Rammah YS (2021) Effect of ZrO2 addition on electrical and mechanical properties of B2O3–PbO–Li2O3 glasses. Ceram Int 47(9):13065–13070. https://doi.org/10.1016/j.ceramint.2021.01.170

    Article  CAS  Google Scholar 

  26. Saeed A, Al-Buriahi MS, Razvi MAN, Salah N, Al-Hazmi FE (2021) Electrical and dielectric properties of meridional and facial Alq3 nanorods powders. J Mater Sci-Mater Electron 32(2):2075–2087. https://doi.org/10.1007/s10854-020-04974-4

    Article  CAS  Google Scholar 

  27. Salah N, Baghdadi N, Alshahrie A, Saeed A, Ansari AR, Memic A, Koumoto K (2019) Nanocomposites of CuO/SWCNT: promising thermoelectric materials for mid-temperature thermoelectric generators. J Eur Ceram Soc 39(11):3307–3314. https://doi.org/10.1016/j.jeurceramsoc.2019.04.036

    Article  CAS  Google Scholar 

  28. Alharbi SR, Alhassan M, Jalled O, Wageh S, Saeed A (2018) Structural characterizations and electrical conduction mechanism of CaBi2Nb2O9 single-phase nanocrystallites synthesized via sucrose-assisted sol–gel combustion method. J Mater Sci 53(16):11584–11594. https://doi.org/10.1007/s10853-018-2458-2

    Article  CAS  Google Scholar 

  29. Gabal MA, Al-Solami F, Al Angari YM, Awad A, Al-Juaid AA, Saeed A (2020) Structural, magnetic, and electrical characterization of Sr-substituted LaFeO3 perovskite synthesized via sucrose auto-combustion route. Mater Sci-Mater Electron 31(4):3146–3158. https://doi.org/10.1007/s10854-020-02861-6

    Article  CAS  Google Scholar 

  30. Gabal MA, Al-Juaid AA, El-Rashed S, Hussein MA, Al Angari YM, Saeed A (2019) Structural, thermal, magnetic and electrical properties of polyaniline/CoFe2O4 Nano-composites with special reference to the dye removal capability. J Inorg Organomet Polym Mater 29(6):2197–2213. https://doi.org/10.1007/s10904-019-01179-z

    Article  CAS  Google Scholar 

  31. Gabal MA, Al-Zahrani NH, Angari YMA, Saaed A (2018) Substitution Effect on the Structural, Magnetic, and Electrical Properties of Co1−xZnxFe2O4 Nanocrystalline Ferrites (x = 0–1) Prepared via Gelatin Auto-Combustion Method. IEEE Trans Magn 54(1):1–12. https://doi.org/10.1109/TMAG.2017.2752726 Substitution Effect on the Structural, Magnetic, and Electrical Properties of Co1−<italic>x</italic>Zn<italic>x</italic>Fe2O4Nanocrystalline Ferrites (<inline-formula> <tex-math notation="LaTeX">$x = 0$ </tex-math> </inline-formula>–1) Prepared via Gelatin Auto-Combustion Method

    Article  Google Scholar 

  32. Gomaa MM (2020) Heterogeneity in relation to electrical and mineralogical properties of hematitic sandstone samples. Appl Water Sci 10(5):105. https://doi.org/10.1007/s13201-020-01186-3

    Article  CAS  Google Scholar 

  33. Gomaa MM, Kassab MA (2017) Forward and inverse modelling of electrical properties of some sandstone rocks using renormalisation group method. Near Surface Geophys 15(5):487–498. https://doi.org/10.3997/1873-0604.2017019

    Article  Google Scholar 

  34. Gomaa MM (2008) Relation between electric properties and water saturation for hematitic sandstone with frequency. Ann Geophys 51(5–6):801–811. https://doi.org/10.4401/ag-3015

    Article  Google Scholar 

  35. Gomaa MM (2020) Homogeneous mixture of hematite and its electrical properties. Mater Chem Phys 243:122584. https://doi.org/10.1016/j.matchemphys.2019.122584

    Article  CAS  Google Scholar 

  36. Gomaa MM (2009) Saturation effect on electrical properties of hematitic sandstone in the audio frequency range using non-polarizing electrodes. Geophys Prospect 57(6):1091–1100. https://doi.org/10.1111/j.1365-2478.2009.00797.x

    Article  Google Scholar 

  37. Gomaa MM (2021) Modeling kaolinite electrical features under pressure using Pseudo random renormalization group method at the audio frequency range. J Phys Chem Solids 152:109963. https://doi.org/10.1016/j.jpcs.2021.109963

    Article  CAS  Google Scholar 

  38. Khater GA, Gomaa MM, Kang J, Yue Y, Mahmoud MA (2020) Thermal, electrical and physical properties of glasses based on basaltic rocks. Silicon 12(3):645–653. https://doi.org/10.1007/s12633-019-00142-4

    Article  CAS  Google Scholar 

  39. Akın Ü, Yüksel ÖF, Tuğluoğlu N (2021) Dielectric properties of Coronene film deposited onto silicon substrate by spin coating for optoelectronic applications. Silicon. https://doi.org/10.1007/s12633-021-01017-3

  40. Khater GA, Nabawy BS, Kang J, Yue Y, Mahmoud MA (2020) Magnetic and electrical properties of glass and glass-ceramics based on weathered basalt. Silicon 12(12):2921–2940. https://doi.org/10.1007/s12633-020-00391-8

    Article  CAS  Google Scholar 

  41. Kekec B, Unal M, Sensogut C (2006) Effect of the textural properties of rocks on their crushing and grinding features. J Univ Sci Technol Beijing 13(5):385–392. https://doi.org/10.1016/S1005-8850(06)60079-0

    Article  Google Scholar 

  42. El-Mahllawy MS, Kandeel AM, Abdel Latif ML, El Nagar AM (2018) The feasibility of using marble cutting waste in a sustainable building clay industry. Recycling 3(3). https://doi.org/10.3390/recycling3030039

  43. Kouras N, Harabi A, Bouzerara F, Foughali L, Policicchio A, Stelitano S, Galiano F, Figoli A (2017) Macro-porous ceramic supports for membranes prepared from quartz sand and calcite mixtures. J Eur Ceram Soc 37(9):3159–3165. https://doi.org/10.1016/j.jeurceramsoc.2017.03.059

    Article  CAS  Google Scholar 

  44. Meftah N, Mahboub MS (2020) Spectroscopic characterizations of sand dunes minerals of El-Oued (northeast Algerian Sahara) by FTIR, XRF and XRD analyses. Silicon 12(1):147–153. https://doi.org/10.1007/s12633-019-00109-5

    Article  CAS  Google Scholar 

  45. Xu L, Peng T, Tian J, Lu Z, Hu Y, Sun W (2017) Anisotropic surface physicochemical properties of spodumene and albite crystals: implications for flotation separation. Appl Surf Sci 426:1005–1022. https://doi.org/10.1016/j.apsusc.2017.07.295

    Article  CAS  Google Scholar 

  46. Hadjadj K, Chihi S (2020) Rietveld refinement based quantitative phase analysis (QPA) of Ouargla (part of grand erg oriental in Algeria) dunes sand. Silicon. https://doi.org/10.1007/s12633-020-00826-2

  47. Rodriguez-Blanco JD, Shaw S, Benning LG (2011) The kinetics and mechanisms of amorphous calcium carbonate (ACC) crystallization to calcite, viavaterite. Nanoscale 3(1):265–271. https://doi.org/10.1039/C0NR00589D

    Article  CAS  PubMed  Google Scholar 

  48. Andersen FA, Brecevic L (1991) Infrared spectra of amorphous and crystalline calcium carbonate. Acta Chern Scand 45(10):1018–1024

    Article  CAS  Google Scholar 

  49. Hsiao Y-H, La Plante EC, Krishnan NMA, Le Pape Y, Neithalath N, Bauchy M, Sant G (2017) Effects of irradiation on Albite’s chemical durability. J Phys Chem A 121(41):7835–7845. https://doi.org/10.1021/acs.jpca.7b05098

    Article  CAS  PubMed  Google Scholar 

  50. Schroeder PA (2002) Infrared Spectroscopy in Clay Science Schroeder, P.A. (2002) Infrared spectroscopy in clay science: in CMS workshop lectures, Vol. 11, Teaching Clay Science, A. Rule and S. Guggenheim, eds., The Clay Mineral Society, Aurora, CO, 181-206. Teaching clay science. Clay Minerals Society.. https://doi.org/10.1346/CMS-WLS-11.11

  51. Flesoura G, Garcia-Banos B, Catala-Civera JM, Vleugels J, Pontikes Y (2019) In-situ measurements of high-temperature dielectric properties of municipal solid waste incinerator bottom ash. Ceram Int 45(15):18751–18759. https://doi.org/10.1016/j.ceramint.2019.06.101

    Article  CAS  Google Scholar 

  52. Taha MA, Youness RA, El-Bassyouni GT, Azooz MA (2020) FTIR spectral characterization, mechanical and electrical properties of P2O5-Li2O-CuO glass-ceramics. Silicon. https://doi.org/10.1007/s12633-020-00661-5

  53. Gabal MA, Bayoumy WA, Saeed A, Al Angari YM (2015) Structural and electromagnetic characterization of Cr-substituted Ni–Zn ferrites synthesized via egg-white route. J Mol Struct 1097:45–51. https://doi.org/10.1016/j.molstruc.2015.04.032

    Article  CAS  Google Scholar 

  54. Salem SM, Antar EM, Mostafa AG, Salem SM, El-badry SA (2011) Compositional dependence of the structural and dielectric properties of Li2O–GeO2–ZnO–Bi2O3–Fe2O3 glasses. J Mater Sci 46(5):1295–1304. https://doi.org/10.1007/s10853-010-4915-4

    Article  CAS  Google Scholar 

  55. Gabal MA, Al-Solami F, Al Angari YM, Awad A, Al-Juaid AA, Saeed A (2020) Structural, magnetic, and electrical characterization of Sr-substituted LaFeO3 perovskite synthesized via sucrose auto-combustion route. J Mater Sci-Mater Electron 31(4):3146–3158. https://doi.org/10.1007/s10854-020-02861-6

    Article  CAS  Google Scholar 

  56. Zhang J, Pan Z, Guo F-F, Liu W-C, Ning H, Chen YB, Lu M-H, Yang B, Chen J, Zhang S-T, Xing X, Rödel J, Cao W, Chen Y-F (2015) Semiconductor/relaxor 0–3 type composites without thermal depolarization in Bi0.5Na0.5TiO3-based lead-free piezoceramics. Nat Commun 6(1):6615. https://doi.org/10.1038/ncomms7615

    Article  CAS  PubMed  Google Scholar 

  57. Church RH, Webb WE, Salsman J (1988) Dielectric properties of low-loss minerals, vol 9194. US Department of the Interior

  58. Sharma N, Patial BS, Thakur N (2018) Dielectric study of chalcogenide (Se80Te20)94Ge6 glass. AIP Conf Proc 1942(1):070008. https://doi.org/10.1063/1.5028806

    Article  CAS  Google Scholar 

  59. Liu Y, Tang J, Mao Z (2009) Analysis of bread dielectric properties using mixture equations. J Food Eng 93(1):72–79. https://doi.org/10.1016/j.jfoodeng.2008.12.032

    Article  Google Scholar 

  60. Sarkar R, Sarkar B, Pal S (2021) Dielectric properties and thermally activated relaxation in monovalent (Li+1) doped multiferroic GdMnO3. Appl Phys A Mater Sci Process 127(3):177. https://doi.org/10.1007/s00339-021-04333-y

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, under grant no. RG-29-135-38. The authors, therefore, gratefully acknowledge the DSR technical and financial support.

Funding

Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, under grant no. RG-29-135-38.

Author information

Authors and Affiliations

Authors

Contributions

Abdu Saeed: Conceptional, Methodology; Formal analysis; Investigation; Data Curation; Writing - Original Draft. Sefiu O. Adewuyi: Methodology; Investigation; Data Curation; Writing - Original Draft. Hussin A. M. Ahmed: Supervision; Resources; Writing - Review & Editing. Seham R. Alharbi: Validation, Writing - Review & Editing. Sabah E. Al Garni: Validation, Writing - Review & Editing. Fouad Abolaban: Supervision; Funding acquisition; Writing - Review & Editing.

Corresponding author

Correspondence to Abdu Saeed.

Ethics declarations

Research Involving Human Participants and/or Animals

Not applicable.

Informed Consent

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

The authors of this work agree for publication.

Competing Interests

The authors declare no competing interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saeed, A., Adewuyi, S.O., Ahmed, H.A.M. et al. Electrical and Dielectric Properties of the Natural Calcite and Quartz. Silicon 14, 5265–5276 (2022). https://doi.org/10.1007/s12633-021-01318-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-021-01318-7

Keywords

Navigation