Skip to main content

Advertisement

Log in

An Approach Towards Low Cost III-Nitride GaN/InGaN Solar Cell: the Use of Si/SiCN Substrate

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

In this article, GaN/ InxGa1 − xN based solar cell with Si substrate and SiCN buffer layer is investigated with the help of modeling and simulation. The performance of the designed device is best suited for the low cost photovoltaic applications in terms of high open-circuit voltage (VOC) of 2.53 V, short-circuit current density (JSC) of 2.83 mA/cm2, Fill Factor (FF) of 76.98% and power conversion efficiency (η) of 4.02% under air mass (AM) 1.5G illumination. The mole fraction of Indium content in InxGa1 − xN plays a significant role in increasing the efficiency and open circuit voltage for improved device performance. A commercial Silvaco TCAD is used for simulation of GaN/InxGa1 − xN based solar cell for extracting the energy band gap, short-circuit current density, power (P) and the power conversion efficiency with different design parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

This article didn’t generate any data or I reused existing data.

References

  1. Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (2007) The Physical Science Basis Summary for Policymakers,” Contribution of Working Group I to the Fourth Assessment Report of the Inter government Panel on Climate Change, Paris, France

  2. Goldemberg J, Johansson TB and Anderson D (2004) World energy Assessment: Overview: 2004 update. United Nations Development Programme

  3. Belghouthi R, Aillerie M (2019) Temperature dependence of InGaN/GaN multiple quantum well solar cells. Energy Procedia 157:793–801

    Article  CAS  Google Scholar 

  4. Della Sala F, Di Carlo A, Lugli P, Bernardini F, Fiorentini V, Scholz R, Jancu JM (1999) Free-carrier screening of polarization fields in wurtzite GaN/InGaN laser structures. Appl Phys Lett 74(14):2002–2004

    Article  CAS  Google Scholar 

  5. Kushwaha AS, Mahala P, Dhanavantri C (2014) Optimization of p-GaN/InGaN/n-GaN double heterojunction pin solar cell for high efficiency: simulation approach. International Journal of Photoenergy 2014:1–6

    Article  Google Scholar 

  6. Boudaoud C, Hamdoune A, Allam Z (2020) Simulation and optimization of a tandem solar cell based on InGaN. Math Comput Simul 167:194–201

    Article  Google Scholar 

  7. Cai XM, Zeng SW, Zhang BP (2009) Fabrication and characterization of InGaN pin homojunction solar cell. Appl Phys Lett 95(17):173504

    Article  Google Scholar 

  8. Routray SR, Lenka TR (2017) Effect of metal-fingers/doped-ZnO transparent electrode on performance of GaN/InGaN solar cell. J Semicond 38(9):092001

    Article  Google Scholar 

  9. Neufeld CJ, Toledo NG, Cruz SC, Iza M, DenBaars SP, Mishra UK (2008) High Quantum Efficiency InGaN/GaN Solar Cells with 2.95 eV Band Gap. Appl Phys Lett 93(14):143502

    Article  Google Scholar 

  10. Bai J, Yang CC, Athanasiou M, Wang T (2014) Efficiency enhancement of InGaN/GaN solar cells with nanostructures. Appl Phys Lett 104(5):051129

    Article  Google Scholar 

  11. Routray S, Lenka TR (2018) Polarization charges in a high-performance Gan/ingan core/shell multiple quantum well nanowire for solar energy harvesting. IEEE Trans Nanotechnol 17(6):1118–1124

    Article  CAS  Google Scholar 

  12. Routray SR, Lenka TR (2019) Effect of degree of strain relaxation on polarization charges of GaN/InGaN/GaN hexagonal and triangular nanowire solar cells. Solid State Electron 159:142–149

    Article  CAS  Google Scholar 

  13. Bhuiyan AG, Sugita K, Hashimoto A, Yamamoto A (2012) InGaN solar cells: present state of the art and important challenges. IEEE J Photovoltaics 2(3):276–293

    Article  Google Scholar 

  14. Liou BW (2010) InxGa1-xN–GaN-Based Solar Cells with a Multiple-Quantum-Well Structure on SiCN–Si (111) Substrates. IEEE Photon Technol Lett 22(4):215–217

    Article  CAS  Google Scholar 

  15. He XL, Chai XZ, Yu L, Han P, Fan S, Ji XL, Li ZY, Liu B, Tao T, Li JL, Xie ZL (2018) The growth of 3C-SiC on Si substrate using a SiCN buffer layer. Thin Solid Films 662:168–173

    Article  CAS  Google Scholar 

  16. He XL, Chai XZ, Yu L, Han P, Fan S, Huang L, Tao T, Li ZY, Xie ZL, Xiu XQ, Chen P (2017) The formation of SiCN film on Si substrate by constant-source diffusion. Thin Solid Films 642:124–128

    Article  CAS  Google Scholar 

  17. Liou BW (2011) Design and fabrication of InxGa1 − xN /GaN solar cells with a multiple-quantum-well structure on SiCN/Si (111) substrates. Thin Solid Films 520(3):1084–1090

    Article  CAS  Google Scholar 

  18. Brown GF, Ager III JW, Walukiewicz W, Wu J (2010) Finite element simulations of compositionally graded InGaN solar cells. Sol Energy Mater Sol Cells 94(3):478–483

    Article  CAS  Google Scholar 

  19. Li ZQ, Lestradet M, Xiao YG, Li S (2011) Effects of polarization charge on the photovoltaic properties of InGaN solar cells. Phys Status Solidi A 208(4):928–931

    Article  CAS  Google Scholar 

  20. Kuo YK, Chang JY, Shih YH (2011) Numerical study of the effects of hetero-interfaces, polarization charges, and step-graded interlayers on the photovoltaic properties of (0001) face GaN/InGaN pin solar cell. IEEE J Quantum Electron 48(3):367–374

    Article  Google Scholar 

  21. Nawaz M, Ahmad A (2012) A TCAD-based modeling of GaN/InGaN/Si solar cells. Semicond Sci Technol 27(3):035019

    Article  Google Scholar 

  22. Mesrane A, Rahmoune F, Mahrane A, Oulebsir A (2015) Design and simulation of InGaN-junction solar cell. Int J Photoenergy 2015:1–9

    Article  Google Scholar 

  23. Chouchen B, El Aouami A, Gazzah MH, Bajahzar A, Feddi EM, Dujardin F, Belmabrouk H (2019) Modeling the impact of temperature effect and polarization phenomenon on InGaN/GaN-multi-quantum well solar cells. Optik 199:163385

    Article  CAS  Google Scholar 

  24. Benmoussa D, Hassane B, Abderrachid H (2013) Simulation of in 0.52 Ga 0.48 N solar cell using AMPS-1D. In 2013 International Renewable and Sustainable Energy Conference (IRSEC) (pp. 23-26). IEEE

  25. Brown GF, Ager JW, Walukiewicz W, Wu J (2009) Numerical simulations of novel InGaN solar cells. In 2009 34th IEEE Photovoltaic Specialists Conference (PVSC) (pp. 001958-001962). IEEE

  26. Chettri D, Singh KJ, Mathew M, Gupta ND (2018) A novel numerical approach for the calculation of refractive index of Wurtzite InxGa1− xN. Int J Mod Phys B 32(28):1850315

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors are equally contributed in the manuscript.

Corresponding author

Correspondence to S. Routray.

Ethics declarations

This article does not contain any studies involving animals or human participants performed by any of the authors.

Conflict of Interest

The authors declare that they have no conflicts of interest.

Consent to Participate

Not Applicable.

Consent for Publication

Not Applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, A.N., Jena, K., Chatterjee, G. et al. An Approach Towards Low Cost III-Nitride GaN/InGaN Solar Cell: the Use of Si/SiCN Substrate. Silicon 14, 2107–2114 (2022). https://doi.org/10.1007/s12633-021-01003-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-021-01003-9

Keywords

Navigation