Skip to main content
Log in

Performance Assessment of CMOS circuits using III-V on Insulator MOS Transistors

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

In this work, with the help of extensive technology computer-aided design simulations, we report a comprehensive study of MOSFET based circuit design using ultra-thin body III-V on-insulator (OI) CMOS transistors. We demonstrate the circuit performance of III-V CMOS by combining InAs-OI n-channel and GaAs-OI junction-less p-channel transistors. The performance metrics of different circuits designed using III-V transistors are also compared with III-V/Germanium and Silicon-on-insulator (SOI) based CMOS logic. CMOS inverter circuit designed using III-V/Ge (InAs-OI/GeOI) CMOS shows 51% and 17% reduction in rise and fall time compared to SOI CMOS. The oscillation frequency of the ring oscillator designed using III-V/Ge (InAs-OI/GeOI) and III-V (InAs-OI/GaAs-OI) CMOS logic is approximately three times and two times higher than SOI based design. The unity-gain bandwidth of the inverting amplifier using III-V/Ge (InAs-OI/GeOI) and III-V (InAs-OI/GaAs-OI) architecture is 22 times and 9.5 times higher compared to SOI CMOS based circuit. Static noise margin (SNM) of conventional six-transistor (6-T) SRAM cell is also analyzed during hold operation. Due to the poor electrostatic integrity of III-V transistors, degradation in SNM is observed compared to its SOI counterparts. The cascode low noise amplifier (LNA) circuit designed using InAs-OI transistor shows the higher gain and low noise figure at the same operating frequency compared to the SOI transistor-based LNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. del Alamo JA (2011) Nanometre-scale electronics with III-V compound semiconductors. Nature 479:317–323. https://doi.org/10.1038/nature10677

    Article  CAS  Google Scholar 

  2. Bhuwalka K, Wu Z, Noh H, Lee W, Cantoro M, Heo Y, Jin S, Choi W, Kwon U, Maeda S, Lee K, Park Y (2015) In0.53Ga0.47As-Based nMOSFET design for low standby power applications. IEEE Trans Electron Devices 62 (9):2816–2823. https://doi.org/10.1109/TED.2015.2445977

    Article  CAS  Google Scholar 

  3. Lin J, Antoniadis DA, del Alamo JA (2014) Novel intrinsic and extrinsic engineering for high-performance high-density self-aligned ingaas mosfets: Precise channel thickness control and sub-40-nm metal contacts. In: 2014 IEEE International electron devices meeting, pp 25.1.1–25.1.4 https://doi.org/10.1109/IEDM.2014.7047104

  4. Kim S, Myeong Geum D, Park M, Choi W (2015) InGaAs on insulator metal oxide semiconductor field effect transistors utilizing Y2O3 buried-oxide. IEEE Electron Device Lett 36(5):451–453

    Article  CAS  Google Scholar 

  5. Kim S, Yokoyama M, Nakane R, Ichikawa O, Osada T, Hata M, Takenaka M, Takagi S (2013) High performance extremely-thin body InAs-on-insulator MOSFETs on Si with Ni-InGaAs metal S/D by contact resistance reduction technology. In: VLSI technology (VLSIT), 2013 symposium on, pp T52–T53

  6. Takagi S, Kim S, Yokoyama M, Zhang R, Taoka N, Urabe Y, Yasuda T, Yamada H, Ichikawa O, Fukuhara N, Hata M, Takenaka M (2013) High mobility CMOS technologies using III-V/Ge channels on Si platform. Solid State Electron 88:2–8

    Article  CAS  Google Scholar 

  7. Shim JP, Kim SK, Kim H, Ju G, Lim H, Kim S, Jun Kim H (2018) Double-gated ultra-thin-body GaAs-on-insulator p-FETs on si. APL Materials 6(1):016103. https://doi.org/10.1063/1.5000532

    Article  Google Scholar 

  8. Hutin L, Le Royer C, Damlencourt J, Hartmann J, Grampeix H, Mazzocchi V, Tabone C, Previtali B, Pouydebasque A, Vinet M, Faynot O (2010) GeOI pMOSFETs scaled down to 30-nm gate length with record off-state current. IEEE Electron Device Lett 31(3):234–236. https://doi.org/10.1109/LED.2009.2038289

    Article  CAS  Google Scholar 

  9. Romanjek K, Hutin L, Le Royer C, Pouydebasque A, Jaud M, Tabone C, Augendre E, Sanchez L, Hartmann J, Grampeix H, Mazzocchi V, Soliveres S, Truche R, Clavelier L, Scheiblin P, Garros X, Reimbold G, Vinet M, Boulanger F, Deleonibus S (2008) High performance 70nm gate length Germanium-On-Insulator pMOSFET with high- /metal gate. In: ESSDERC 2008 - 38th European solid-state device research conference, pp 75–78. https://doi.org/10.1109/ESSDERC.2008.4681702

  10. Tewari S, Biswas A, Mallik A (2015) Performance of CMOS with Si pMOS and asymmetric InP/InGaAs nMOS for analog circuit applications. IEEE Trans Electron Devices 62(5):1655–1658. https://doi.org/10.1109/TED.2015.2409372

    Article  Google Scholar 

  11. Maity SK, Pandit S. (2017) Study of G-S/D underlap for enhanced analog performance and rf/circuit analysis of UTB inas-OI-si MOSFET using NQS small signal model. Superlattice Microst 101:362–372. https://doi.org/10.1016/j.spmi.2016.11.053

    Article  CAS  Google Scholar 

  12. Maity SK, Pandit S (2017) Effects of BOX engineering on analogue/RF, and circuit performance of InGaAs-OI-Si MOSFET. Int J Electron 104(11):1777–1794. https://doi.org/10.1080/00207217.2017.1312715

    Article  CAS  Google Scholar 

  13. Maity SK, Pandit S (2020) Analysis of scaling of thickness of the buffer layer on analog/RF and circuit performance of InAs-OI-Si MOSFET using NQS model. INT J NUMER MODEL EL 33(1):e2664. https://doi.org/10.1002/jnm.2664

    Article  Google Scholar 

  14. Maity SK, Haque A, Pandit S (2020) Charge-based compact drain current modeling of Inas-OI-Si MOSFET including subband energies and band nonparabolicity. IEEE Trans Electron Devices 67(6):2282–2289. https://doi.org/10.1109/TED.2020.2984578

    Article  CAS  Google Scholar 

  15. Dong L, Wang XW, Zhang JY, Li XF, Lou XB, Conrad N, Wu H, Gordon RG, Ye PD (2014) III-V CMOS devices and circuits with high-quality atomic-layer-epitaxial La2O3/GaAs interface. In: 2014 Symposium on VLSI technology (VLSI-Technology): digest of technical papers, pp 1–2. https://doi.org/10.1109/VLSIT.2014.6894361

  16. Yokoyama M, Iida R, Ikku Y, Kim S, Takagi H, Yasuda T, Yamada H, Ichikawa O, Fukuhara N, Hata M, Takenaka M, Takagi S (2013) Formation of III-V-on-insulator structures on Si by direct wafer bonding. Semicond Sci Technol 28:1–10

    Article  Google Scholar 

  17. Kim S, Yokoyama M, Taoka N, Iida R, Lee S, Nakane R, Urabe Y, Miyata N, Yasuda T, Yamada H, Fukuhara N, Hata M, Takenaka M, Takagi S (2011) High performance extremely-thin body III-V-on-insulator MOSFETs on a Si substrate with Ni-InGaAs metal S/D and MOS interface buffer engineering. In: VLSI technology (VLSIT), 2011 symposium on, pp 58–59

  18. Synopsys (2019) Sentaurus TCAD Manuals. V.2019 edn

  19. ITRS (2010) International technology roadmap for semiconductors: ITRS 2010 updates. http://www.itrs.net/Links/2010ITRS/Home2010.htm

  20. NSM (2019) Ioffe institute of the russian academy of sciences. www.ioffe.ru/SVA/NSM/semicond/

  21. Canali C, Majni G, Minder R, Ottaviani G (1975) Electron and hole drift velocity measurements in silicon and their empirical relation to electric field and temperature. IEEE Trans Electron Device 22(11):1045–1047. https://doi.org/10.1109/T-ED.1975.18267

    Article  Google Scholar 

  22. Bufler FM, Asahi Y, Yoshimura H, Zechner C, Schenk A, Fichtner W (2003) Monte carlo simulation and measurement of nanoscale n-mosfets. IEEE Trans Comput-Aided Des Integrated Circ Syst. 50 (2):418–424. https://doi.org/10.1109/TED.2002.808420

    CAS  Google Scholar 

  23. Ancona M, Iafrate GJ (1989) Quantum correction to the equation of state of an electron gas in a semiconductor. Phys Rev B 39(13):9536–9540

    Article  CAS  Google Scholar 

  24. Lombardi C, Manzini S, Saporito A, Vanzi M (1988) A physically based mobility model for numerical simulation of nonplanar devices. IEEE Trans Comput-Aided Des Integrated Circ Syst. 7(11):1164–1171. https://doi.org/10.1109/43.9186

    Article  Google Scholar 

  25. Kim S, Yokoyama M, Taoka N, Iida R, Lee S, Nakane R, Urabe Y, Miyata N, Yasuda T, Yamada H, Fukuhara N, Hata M, Takenaka M, Takagi S (2013) Experimental study on electron mobility in InxGa1−xAs-on-insulator metal-oxide-semiconductor field-effect transistors with in content modulation and MOS interface buffer engineering. IEEE Trans Nanotechnol 12(4):621–628. https://doi.org/10.1109/TNANO.2013.2265435

    Article  CAS  Google Scholar 

  26. Kim S, Yokoyama M, Taoka N, Nakane R, Yasuda T, Ichikawa O, Fukuhara N, Hata M, Takenaka M, Takagi S (2013) Sub-60-nm extremely thin body In 1x GaxAs -On-Insulator MOSFETs on Si with Ni-InGaAs Metal S/D and MOS interface buffer engineering and its scalability. IEEE Trans Electron Device 60(8):2512–2517. https://doi.org/10.1109/TED.2013.2270558

    Article  CAS  Google Scholar 

  27. Hellings G, Eneman G, Krom R, De Jaeger B, Mitard J, De Keersgieter A, Hoffmann T, Meuris M, De Meyer K (2010) Electrical tcad simulations of a germanium pmosfet technology. IEEE Trans Electron Devices 57(10):2539–2546. https://doi.org/10.1109/TED.2010.2060726

    Article  CAS  Google Scholar 

  28. Esseni D, Mastrapasqua M, Celler GK, Baumann FH, Fiegna C, Selmi L, Sangiorgi E (2000) Low field mobility of ultra-thin SOI N- and P-MOSFETs: measurements and implications on the performance of ultra-short MOSFETs. In: International electron devices meeting 2000. technical digest. IEDM (Cat. No.00CH37138), pp 671–674,. https://doi.org/10.1109/IEDM.2000.904408

  29. Tian Y, Huang R, Zhang X, Wang Y (2005) A novel nanoscaled device concept: quasi-SOI MOSFET to eliminate the potential weaknesses of UTB SOI MOSFET. IEEE Trans Electron Devices 52(4):561–568. https://doi.org/10.1109/TED.2005.844737

    Article  CAS  Google Scholar 

  30. Takagi S, Iisawa T, Tezuka T, Numata T, Nakaharai S, Hirashita N, Moriyama Y, Usuda K, Toyoda E, Dissanayake S, Shichijo M, Nakane R, Sugahara S, Takenaka M, Sugiyama N (2008) Carrier-transport-enhanced channel CMOS for improved power consumption and performance. IEEE Transactions on Electron Devices 55(1):21–39. https://doi.org/10.1109/TED.2007.911034

    Article  CAS  Google Scholar 

  31. Lee TH (2003) The Design of CMOS Radio-Frequency Integrated Circuits, 2nd edn. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511817281

    Book  Google Scholar 

Download references

Acknowledgements

The second author thanks Department of Electronics and Information Technology, Govt. of India for utilizing the resources obtained under the SMDP-C2SD project at the University of Calcutta.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subir Kumar Maity.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maity, S.K., Pandit, S. Performance Assessment of CMOS circuits using III-V on Insulator MOS Transistors. Silicon 13, 1939–1949 (2021). https://doi.org/10.1007/s12633-020-00582-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-020-00582-3

Keywords

Navigation