Skip to main content

Advertisement

Log in

Foliar Spraying of Silicon Associated with Salicylic Acid Increases Silicon Absorption and Peanut Growth

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Silicon (Si) combined with foliar spraying of salicylic acid (SA) can affect the absorption of this beneficial element. A study with Si non-accumulators plants (soybean and bean) observed that SA foliar spraying improved leaf absorption. However, this effect is unknown in peanut (Arachis hypogaea), a Si non-accumulator species. The aim of the present study was to assess the effect of applying Si to the leaves or roots, associated with foliar applications of SA, on Si absorption and dry weight production of peanut plants. An experiment was conducted with IAC OL4 peanut cultivars in pots filled with 6 L of sand. A randomized block design was used, in a 3 × 3 factorial scheme, as follows: Si application via leaves and roots in the form of monosilicic acid and the control (no Si) and three foliar applications of salicylic acid (0; 0.05; 0.15 mM), with five repetitions. The Si was supplied via nutrient solution (root) and leaves throughout the experiment, with three spraying treatments: at the end of the vegetative stage, onset of flowering and at the start of pod formation. The SA foliar sprayings were performed together with Si. Foliar silicon application was superior to its root counterpart at all SA concentrations. The greatest Si accumulation for root application was observed at a concentration of 0.05 mM of SA. Shoot dry weight and root dry weight production increased with Si. SA application, at a concentration of 0.05 mM, especially when associated with foliar Si, favored Si absorption and dry weight production in peanut plants. Foliar spraying of Si with the addition of salicylic acid is a new strategy for silicon supplementation in Si non-accumulators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Etesami H, Jeong BR (2018) Silicon (Si): review and future prospects on the action mechanisms in alleviating biotic and abiotic stresses in plants. Ecotoxicol Environ Saf 147:881–896. https://doi.org/10.1016/J.ECOENV.2017.09.063

    Article  CAS  PubMed  Google Scholar 

  2. Prado R de M (2020) Nutrição de plantas [Plant nutrition], 2a ed. Editora Unesp, São Paulo

  3. Takahashi E, Ma JF, Miyake Y (1990) The possibility of silicon as an essential element for higher plants. Comments Agric Food Chem 2:99–102

    CAS  Google Scholar 

  4. Carneiro JMT, Oliveira LA, Rossete ALRM, Abreu Júnior CH, Bendassolli JA (2010) Accumulation and translocation of silicon in rice and bean plants using the 30 si stable isotope. J Plant Nutr 33:1374–1383. https://doi.org/10.1080/01904167.2010.484097

    Article  CAS  Google Scholar 

  5. Ma JF, Miyake Y, Takahashi E (2001) Chapter 2 silicon as a beneficial element for crop plants. Stud Plant Sci 8:17–39. https://doi.org/10.1016/S0928-3420(01)80006-9

  6. Ma JF, Yamaji N (2008) Functions and transport of silicon in plants. Cell Mol Life Sci 65:3049–3057. https://doi.org/10.1007/s00018-008-7580-x

    Article  CAS  PubMed  Google Scholar 

  7. Nikolic M, Nikolic N, Liang Y, Kirkby EA, Römheld V (2007) Germanium-68 as an adequate tracer for silicon transport in plants. Characterization of silicon uptake in different crop species. Plant Physiol 143:495–503. https://doi.org/10.1104/pp.106.090845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yamaji N, Ma JF (2007) Spatial distribution and temporal variation of the rice silicon transporter Lsi1. Plant Physiol 143:1306–1313. https://doi.org/10.1104/pp.106.093005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mehrabanjoubani P, Abdolzadeh A, Sadeghipour HR, Aghdasi M (2015) Silicon affects transcellular and apoplastic uptake of some nutrients in plants. Pedosphere 25:192–201. https://doi.org/10.1016/S1002-0160(15)60004-2

    Article  CAS  Google Scholar 

  10. Shi G, Cai Q, Liu C, Wu L (2010) Silicon alleviates cadmium toxicity in peanut plants in relation to cadmium distribution and stimulation of antioxidative enzymes. Plant Growth Regul 61:45–52. https://doi.org/10.1007/s10725-010-9447-z

    Article  CAS  Google Scholar 

  11. Shen X, Xiao X, Dong Z, Chen Y (2014) Silicon effects on antioxidative enzymes and lipid peroxidation in leaves and roots of peanut under aluminum stress. Acta Physiol Plant 36:3063–3069. https://doi.org/10.1007/s11738-014-1676-8

    Article  CAS  Google Scholar 

  12. Dong Z, Li Y, Xiao X, Chen Y, Shen X (2018) Silicon effect on growth, nutrient uptake, and yield of peanut ( Arachis hypogaea L.) under aluminum stress. J Plant Nutr 41:2001–2008. https://doi.org/10.1080/01904167.2018.1485163

    Article  CAS  Google Scholar 

  13. Crusciol CAC, Soratto RP, Castro GSA, Costa CHMD, Ferrari Neto J (2013) Foliar application of stabilized silicic acid on soybean, common bean, and peanut. Rev Ciência Agronômica 44:404–410. https://doi.org/10.1590/S1806-66902013000200025

    Article  Google Scholar 

  14. Barros TC, De Mello PR, Garcia Roque C, Barzotto GR, Wassolowski CR (2018) Silicon and salicylic acid promote different responses in legume plants. J Plant Nutr 41:2116–2125. https://doi.org/10.1080/01904167.2018.1497177

    Article  CAS  Google Scholar 

  15. Laane H-M (2018) The effects of foliar sprays with different silicon compounds. Plants 7:45. https://doi.org/10.3390/plants7020045

  16. Birchall JD (1995) The essentiality of silicon in biology. Chem Soc Rev 24:351. https://doi.org/10.1039/cs9952400351

    Article  CAS  Google Scholar 

  17. Epstein E, Bloom AJ (2006) Nutrição Mineral de Plantas: principios e perspectivas [Mineral plant nutrition: principles and perspectives]. Planta, Londrina

    Google Scholar 

  18. Choppin GR, Pathak P, Thakur P (2008) Polymerization and complexation behavior of silicic acid: a review. Main Gr Met Chem 31:53–71

    CAS  Google Scholar 

  19. Khan W, Prithiviraj B, Smith DL (2003) Photosynthetic responses of corn and soybean to foliar application of salicylates. J Plant Physiol 160:485–492. https://doi.org/10.1078/0176-1617-00865

    Article  CAS  PubMed  Google Scholar 

  20. Khan MIR, Fatma M, Per TS, Anjum NA, Khan NA (2015) Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Front Plant Sci 6:462. https://doi.org/10.3389/fpls.2015.00462

    Article  PubMed  PubMed Central  Google Scholar 

  21. Nazar R, Iqbal N, Syeed S, Khan NA (2011) Salicylic acid alleviates decreases in photosynthesis under salt stress by enhancing nitrogen and sulfur assimilation and antioxidant metabolism differentially in two mungbean cultivars. J Plant Physiol 168:807–815. https://doi.org/10.1016/J.JPLPH.2010.11.001

    Article  CAS  PubMed  Google Scholar 

  22. Hayat Q, Hayat S, Irfan M, Ahmad A (2010) Effect of exogenous salicylic acid under changing environment: a review. Environ Exp Bot 68:14–25. https://doi.org/10.1016/J.ENVEXPBOT.2009.08.005

    Article  CAS  Google Scholar 

  23. Deus ACF, de Mello PR, Alvarez RCF, Oliveira RLL, Felisberto G (2019) Role of silicon and salicylic acid in the mitigation of nitrogen deficiency stress in rice plants. Silicon 12:1–9. https://doi.org/10.1007/s12633-019-00195-5

    Article  CAS  Google Scholar 

  24. Prasad PVV, Boote KJ, Allen LH, Thomas JMG (2003) Super-optimal temperatures are detrimental to peanut (Arachis hypogaea L.) reproductive processes and yield at both ambient and elevated carbon dioxide. Glob Chang Biol 9:1775–1787. https://doi.org/10.1046/j.1365-2486.2003.00708.x

    Article  Google Scholar 

  25. D’souza AA, Shegokar R (2016) Polyethylene glycol (PEG): a versatile polymer for pharmaceutical applications. Expert Opin Drug Deliv 13:1257–1275

    Article  Google Scholar 

  26. Savvas D, Ntatsi G (2015) Biostimulant activity of silicon in horticulture. Sci Hortic (Amsterdam) 196:66–81

    Article  CAS  Google Scholar 

  27. Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Circ Calif Agric Exp Stn 347

  28. Ferreira DF (2014) Sisvar: a guide for its bootstrap procedures in multiple comparisons. Ciência e Agrotecnologia 38:109–113

    Article  Google Scholar 

  29. Mitani N, Ma JF (2005) Uptake system of silicon in different plant species. J Exp Bot 56:1255–1261. https://doi.org/10.1093/jxb/eri121

    Article  CAS  PubMed  Google Scholar 

  30. Dayanandan P, Kaufman PB, Franklin CI (1983) Detection of silica in plants. Am J Bot 70:1079–1084. https://doi.org/10.1002/j.1537-2197.1983.tb07909.x

    Article  CAS  Google Scholar 

  31. Ma JF, Yanaji N, Mitani-Ueno N (2011) Transport of silicon from roots to panicles in plants. Proc Japan Acad Ser B 87:377–385. https://doi.org/10.2183/pjab.87.377

    Article  CAS  Google Scholar 

  32. Wiese H, Nikolic M, Romheld V (2007) Silicon in plant nutrition – effects on zinc, manganese and boron leaf concentrations ans compartmentation. In: Sttelmacher B, Horst WJ (eds) The apoplast of higher plants: compartment of storage, transport and reaction. Springer, London, pp 33–47

    Chapter  Google Scholar 

  33. de Queiroz DL, Camargo JMM, Dedecek RA, Oliveira EBD, Zanol KMR, Melido RCN (2018) Absorção e translocação de silício em mudas de Eucalyptus camaldulensis [Absorption and translocation of silicon in Eucalyptus camaldulensis seedlings]. Ciência Florest 28:632. https://doi.org/10.5902/1980509832053

    Article  Google Scholar 

  34. Ma JF, Yamaji N (2006) Silicon uptake and accumulation in higher plantas. Trends Plant Sci 11:392–397. https://doi.org/10.1016/j.tplants.2006.06.007

    Article  CAS  PubMed  Google Scholar 

  35. Souza Junior JP, Prado RM, Sarah MMS, Felisberto G (2019) Silicon mitigates boron deficiency and toxicity in cotton cultivated in nutrient solution. J Plant Nutr Soil Sci 182:805–814. https://doi.org/10.1002/jpln.201800398

    Article  CAS  Google Scholar 

  36. Barros TC, de Mello PR, Roque CG, Arf MV, Vilela RG (2019) Silicon and salicylic acid in the physiology and yield of cotton. J Plant Nutr 42:458–465. https://doi.org/10.1080/01904167.2019.1567765

    Article  CAS  Google Scholar 

  37. Javanmardi J, Akbari N (2016) Salicylic acid at different plant growth stages affects secondary metabolites and phisico-chemical parameters of greenhouse tomato. Adv Hortic Sci 30:151–157. https://doi.org/10.13128/ahs-20277

    Article  Google Scholar 

  38. Nivedithadevi D, Somasundaram R, Pannerselvam R (2012) Effect of abscisic acid, paclobutrazol and salicylic acid on the growth and pigment variation in Solanum trilobatum (L). Int J drug Dev Res 4:236–246

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonas Pereira de Souza Junior.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Souza Junior, J.P., Frazão, J.J., de Morais, T.C.B. et al. Foliar Spraying of Silicon Associated with Salicylic Acid Increases Silicon Absorption and Peanut Growth. Silicon 13, 1269–1275 (2021). https://doi.org/10.1007/s12633-020-00517-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-020-00517-y

Keywords

Navigation