Skip to main content
Log in

Effect of 4-Aminobutyltriethoxysilane Modified Al2O3 Nanoparticles on the Dielectric Properties of Epoxy Nanocomposites for High Voltage Applications

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The diglycidyl ether of bisphenol-A (DGEBA) epoxy resin (GY260) is commonly used in this work. Silane (4-Aminobutyltriethoxysilane (ABTES)) acted as a coupling agent and attached easily with nanoparticles surface. Triethylenetetramine (TEPA), also denoted as Tetrene, was used as a curing agent. The ABTES-Al2O3 loaded epoxy nanocomposites were synthesized followed by their dielectric permittivity and tan delta value in a frequency range of 50 to 5 × 106 Hz were studied. At 30 °C, 60 °C and 120 °C temperatures, epoxy resin nanocomposites show excellent results. The dielectric constant, dielectric loss and AC conductivity variation make ABTES-Al2O3 loaded epoxy nanocomposites suitable for high-performance electrical and thermal applications. The dielectric investigations of ABTES-Al2O3 displayed extraordinary varieties with expanding recurrence and as for their stage. There is extensive enthusiasm for utilizing these new materials in capacitor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang Q, Chen G (2012) Effect of nanofillers on the dielectric properties of epoxy nanocomposites. Adv Mater Res 1(1):93–107

    Article  Google Scholar 

  2. Gurumurthy C, Hui C (2006) Controlling interfacial interpenetration and fracture properties of polyimide/epoxy interfaces. J Adhes 82:239–266

    Article  CAS  Google Scholar 

  3. Suresh S, Jayamoorthy K, Karthikeyan S (2018) Switch-on fluorescence of 5-amino-2-mercapto benzimidazole by Mn3O4 nanoparticles: experimental and theoretical approach. J Lumin 198:28–33

    Article  CAS  Google Scholar 

  4. Rajasekar TS, Navamani P, Jayamoorthy K, Srinivasan N (2017) 2-(4, 5-Dimethyl-1-m-tolyl-1H-imidazol-2-yl) phenol as Efficient Chemosensor for On–Off Fluorescence System: Catalytic Synthesis and NMR Spectral Studies. J Inorg Organomet Polym Mater 27:962–967

    Article  CAS  Google Scholar 

  5. Suresh S, Karthikeyan S, Jayamoorthy K (2016) Fluorescence sensing of potential NLO material by bunsenite NiO nanoflakes: Room temperature magnetic studies. Sensors Actuators B Chem 232:269–275

    Article  CAS  Google Scholar 

  6. Saravanan P, Jayamoorthy K, Kumar SA (2016) Fluorescence quenching of APTES by Fe2O3 nanoparticles–Sensor and antibacterial applications. J Lumin 178:241–248

    Article  CAS  Google Scholar 

  7. Suresh S, Jayamoorthy K, Saravanan P, Karthikeyan S (2016) Switch-off fluorescence of 5-amino-2-mercapto benzimidazole with Ag3O4 nanoparticles: experimental and theoretical investigations. Sensors Actuators B Chem 225:463–468

    Article  CAS  Google Scholar 

  8. Saravanan P, Jayamoorthy K, Kumar SA (2015) Switch-On fluorescence and photo-induced electron transfer of 3-aminopropyl triethoxysilane to ZnO: Dual applications in sensors and antibacterial activity. Sensors Actuators B Chem 221:784–791

    Article  CAS  Google Scholar 

  9. Jayabharathi J, Thanikachalam V, Kalaiarasi V, Jayamoorthy K (2014) Enhancing photoluminescent behavior of 2-(naphthalen-1-yl)-1,4,5-triphenyl-1H-imidazole by ZnO and Bi2O3. Spectrochim Acta Part A 118:182–186

    Article  Google Scholar 

  10. Jayabharathi J, Thanikachalam V, Kalaiarasi V, Jayamoorthy K (2014) Characterization and electronic spectral studies of 2-(naphthalen-1-yl)-4,5-diphenyl-1H-imidazole bound Fe2O3 nanoparticles. Spectrochim Acta Part A 120:84–87

    Article  Google Scholar 

  11. Karunakaran C, Jayabharathi J, Sathishkumar R, Jayamoorthy K (2013) Interaction of fluorescent sensor with superparamagnetic iron oxide nanoparticles. Spectrochim Acta Part A 110:151–156

    Article  CAS  Google Scholar 

  12. Karunakaran C, Jayabharathi J, Jayamoorthy K (2013) Fluorescence quenching of organic molecule by insulator. Spectrochim Acta Part A 112:417–421

    Article  CAS  Google Scholar 

  13. Karunakaran C, Jayabharathi J, Jayamoorthy K (2013) Fluorescence enhancing and quenching of TiO2 by benzimidazole. Sensors Actuators B Chem 188:207–211

    Article  CAS  Google Scholar 

  14. Karunakaran C, Jayabharathi J, Jayamoorthy K (2013) Benzimidazole: dramatic luminescence turn-on by ZnO nanocrystals. Measurement 46:3883–3886

    Article  Google Scholar 

  15. Maity P, Kasisomayajula S, Parameswaran V, Basu N (2008) Improvement in surface degradation properties of polymer composites due to pre-processed nanometric alumina fillers. IEEE Trans Dielectr Electr Insul 15:63–72

    Article  CAS  Google Scholar 

  16. Huang X, Zheng Y, Jiang P, Yin Y (2010) Influence of nanoparticle surface treatment on the electrical properties of cycloaliphatic epoxy nanocomposites. IEEE Trans Dielectr Electr Insul 17:635–643

    Article  CAS  Google Scholar 

  17. Simbar AR, Shanaghi A, Moradi H, Chu PK (2020) Corrosion behavior of functionally graded and self-healing nanostructured TiO2–Al2O3 - Benzotriazole coatings deposited on AA 2024-T3 by the sol-gel method. Mater Chem Phys 240:Article 122233

    Article  Google Scholar 

  18. Eskandari MJ, Shafyei A, Karimzadeh F (2020) One-step fabrication of Au@Al2O3 core-shell nanoparticles by continuous-wave fiber laser ablation of thin gold layer on aluminum surface: Structural and optical properties. Opt Laser Technol, Article 126:106066

  19. Saravanan P, Jayamoorthy K, Kumar SA (2016) Design and characterization of non-toxic nano-hybrid coatings for corrosion and fouling resistance. J Sci Adv Mater Devices 1(3):367–378

    Article  Google Scholar 

  20. Suresh S, Karthikeyan S, Jayamoorthy K, Saravanan P (2016) Comparison of antibacterial and antifungal activities of 5-amino-2-mercaptobenzimidazole and functionalized NiO nanoparticles. Karbala Int J Modern Sci 2(3):188–195

    Article  Google Scholar 

  21. Suresh S, Karthikeyan S, Jayamoorthy K (2016) FTIR and multivariate analysis to study the effect of bulk and nano copper oxide on peanut plant leaves. J Sci Adv Mater Devices 1(3):343–350

    Article  Google Scholar 

  22. Suresh S, Karthikeyan S, Saravanan P, Jayamoorthy K, Dhanalekshmi KI (2016) Comparison of antibacterial and antifungal activity of 5-amino-2-mercapto benzimidazole and functionalized Ag 3O4 nanoparticles. Karbala Int J Modern Sci 2(2):129–137

    Article  Google Scholar 

  23. Suresh S, Karthikeyan S, Jayamoorthy K (2016) Spectral investigations to the effect of bulk and nano ZnO on peanut plant leaves. Karbala Int J Modern Sci 2(2):69–77

    Article  Google Scholar 

  24. Suresh S, Saravanan P, Jayamoorthy K, Kumar SA, Karthikeyan S (2016) Development of silane grafted ZnO core shell nanoparticles loaded diglycidyl epoxy nanocomposites film for antimicrobial applications. Mater Sci Eng C 64:286–292

    Article  CAS  Google Scholar 

  25. Suresh S, Karthikeyan S, Jayamoorthy K (2016) Effect of bulk and nano-Fe2O3 particles on peanut plant leaves studied by Fourier transform infrared spectral studies. J Adv Res 7(5):739–747

    Article  CAS  Google Scholar 

  26. Li J, Li L, Xiang Y, Zheng S (2016) Nanostructured epoxy thermosets containing poly(vinylidene fluoride): preparation, morphologies, and dielectric properties. Ind Eng Chem Res 55:586–596

    Article  CAS  Google Scholar 

  27. Jlassi K, Chandran S, Poothanari MA, Zayani MB, Thomas S, Chehimi MM (2016) Clay/polyaniline hybrid through diazonium chemistry: conductive nanofiller with unusual effects on interfacial properties of epoxy nanocomposites. Langmuir. https://doi.org/10.1021/acs.langmuir.5b04457

  28. Nelson JK, Fothergill JC (2004) Internal charge behaviour of nanocomposites. Nanotechnology 15:586–595

    Article  CAS  Google Scholar 

  29. Sasidhar S, Schuman TP, Dogan F (2013) Dielectric properties of polymer−particle nanocomposites influenced by electronic nature of filler surfaces. ACS Appl Mater Interfaces 5:1917–1927

    Article  Google Scholar 

  30. Lewis TJ (2006) Nano-composite dielectrics: the dielectric nature of the nano-particle environment. IEEJ Trans Fundam Mater 126:1020–1030

    Article  Google Scholar 

  31. Plesa I, Ciuprina F, Notingher PV (2010) Dielectric spectroscopy of epoxy resin with and without inorganic nanofillers. J Adv Res Phys 1:011011

    Google Scholar 

  32. Huang X, Zheng Y, Jiang P, Yin Y (2010) Influence of nanoparticles surface treatment on the electrical properties of cycloaliphatic epoxy nanocomposites. IEEE Trans Dielectr Electr Insul 17:635–643

    Article  CAS  Google Scholar 

  33. Roy M, Nelson JK, MacCrone RK, Schandler LS, Reed CW, Keefe R, Zenger W (2005) Polymer nanocomposites dielectrics – the role of the interface. IEEE Trans Diel Electr Insul 12:629–643

    Article  CAS  Google Scholar 

  34. Tanaka T, Montanari GC, Mülhaupt R (2004) Polymer nanocomposites as dielectrics and electrical insulation-perspectives for processing technologies, material characterization and future applications. IEEE Trans Diel Electr Insul 11:763–784

    Article  CAS  Google Scholar 

  35. Singha S, Thomas MJ (2008) Dielectric properties of epoxy nanocomposites. IEEE Trans Dielectr Electr Insul 15:12–23

    Article  CAS  Google Scholar 

  36. Suresh S, Nisha P, Saravanan P, Jayamoorthy K, Karthikeyan S (2018) Investigation of the thermal and dielectric behavior of epoxy Nano-hybrids by using Silane modified Nano-ZnO. Silicon 10:1291–1303

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Ravichandran.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nisha, P., Dhanalekshmi, K.I. & Ravichandran, C. Effect of 4-Aminobutyltriethoxysilane Modified Al2O3 Nanoparticles on the Dielectric Properties of Epoxy Nanocomposites for High Voltage Applications. Silicon 13, 1009–1015 (2021). https://doi.org/10.1007/s12633-020-00471-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-020-00471-9

Keywords

Navigation