Skip to main content
Log in

Influence of Germanium Source Dual Halo Dual Dielectric Triple Material Surrounding Gate Tunnel FET for Improved Analog/RF Performance

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

This paper investigates the RF Stability performance of the Germanium Source Dual Halo Dual Dielectric Triple Material Surrounding Gate Tunnel FET Ge(SRC)-DH-DD-TM-SG-TFET using 3D - Silvaco Atlas TCAD device simulator. The impact of the geometrical parameter, high-k dielectric material and bias conditions on the key figure of merit (FoM) like Transconductance (gm), Gate capacitance (Cgg) and RF parameters like Stern Stability Factor (K), Critical Frequency (fk) are investigated. The analytical model provides the relation between fk and small signal parameters which provide guidelines for optimizing the device geometrical parameter. The results show improvement in ION current, gm, ft and fk for the optimized device structure. The optimized Ge(SRC)-DH-DD-TM-SG-TFET exhibits fk of 75.0 GHz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Reddick WM, Amaratunga GAJ (1995) Silicon surface tunnel transistor. Appl Phys Lett 67(4):494–496

    Article  CAS  Google Scholar 

  2. Appenzeller J, Lin Y-M, Knoch J, Avouris P (2004) Band-to-band tunneling in carbon nanotube field-effect transistors. Phys Rev Lett 93(19):196805

    Article  CAS  Google Scholar 

  3. Abadiand RMI, Ziabari SAS (2016) Representation of type I heterostructure junctionless tunnel field effect transistor for high-performance logic application. Appl Phys A Mater Sci Process 122:616–623

    Article  Google Scholar 

  4. Bagga N, Dasgupta S (2017). IEEE Trans Electron Devices 64:2

    Article  Google Scholar 

  5. Boucart K, Ionescu AM (2007) Double-Gate Tunnel FET With High-$\kappa Gate Dielectric. IEEE Trans. Electron Devices 54(7):1725–1733

    Article  CAS  Google Scholar 

  6. Molaei Imen Abadi R, Ziabari S (2016) Improved performance of nanoscale junctionless tunnel field-effect transistor based on gate engineering approach. Appl Phys A 122:988. https://doi.org/10.1007/s00339-016-0530-9

    Article  CAS  Google Scholar 

  7. Colinge J-P (2004) Multiple-gate soi mosfets. Solid State Electron 48(6):897–905

    Article  CAS  Google Scholar 

  8. Vanitha P, Samuel TSA, Nirmal D (2019). AEU-Int J Electron Commu 99:34–39

    Article  Google Scholar 

  9. Bhuwalka KK, Sedlmaier S, Ludsteck AK, Tolksdorf C, Schulze J, Eisele I (2004) Vertical tunnel field-effect transistor. IEEE Trans Electron Devices 51(2):279–282

    Article  CAS  Google Scholar 

  10. Zhang Q, Zhao W, Seabaugh A (2006) Low-subthreshold-swing tunnel transistors. IEEE Electron Device Lett 27(4):297–300

    Article  CAS  Google Scholar 

  11. Boucart K, Ionescu AM (2007) Length scaling of the double gate tunnel FET with a high-k gate dielectric. Solid State Electron 51(11):1500–1507

    Article  CAS  Google Scholar 

  12. Madan J, Pandey R, Sharma R, Chaujar R (2019) Impact of metal silicide source electrode on polarity gate induced source in junctionless TFET. Appl Phys A. https://doi.org/10.1007/s00339-019-2900-6

  13. Damrongplasit N, Kim SH, Liu T-JK (2013) Study of random dopant fluctuation induced variability in the raised-Ge-source TFET. IEEE Electron Device Lett 34(2):184–186

    Article  CAS  Google Scholar 

  14. Tirkey S, Sharma D, Yadav DS, Yadav S (2017) Analysis of a novel metal implant junctionless tunnel FET for better DC and analog/RF electrostatic parameters. IEEE Trans Electron Devices 64(9):3943–3950

    Article  CAS  Google Scholar 

  15. Salimian F, Dideban D (2018) A double gate resonant tunneling transistor scheme based on silicene nanotube. Physica E: Low-dimensional Systems and Nanostructures 104:268–274

    Article  CAS  Google Scholar 

  16. Lee C-W, Afzalian A, Akhavan ND, Yan R, Ferain I, Colinge J-P (2009) Junctionless multigate field-effect transistor. Appl Phys Lett 94(5):053511

    Article  Google Scholar 

  17. Bal P, Akram MW, Mondal P, Ghosh B (2013) Performance estimation of sub-30 nm junctionless tunnel FET (JLTFET). J Comput Electron 12(4):782–789

    Article  Google Scholar 

  18. Kuo-Hsing Kao ,Anne S. Verhulst, William G. Vandenberghe, Bart Sorée, Guido Groeseneken, Kristin De Meyer. Direct and Indirect Band-to-Band Tunnelingin Germanium-Based TFETs. IEEE Transactions On Electron Devices, Vol. 59, No. 2, 2012

  19. Akram MW, Ghosh B (2014) Analog performance of double gate junctionless tunnel field effect transistor. J Semicond 35(7):074001

    Article  Google Scholar 

  20. Cecil K, Singh J (2016) Influence of Germanium source on dopingless tunnel-FET for improved analog/RF performance. Superlattices and Microstructures. https://doi.org/10.1016/j.spmi.2016.11.039

  21. Nadim Chowdhury, Imtiaz Ahmed, Takian Fakhrul, M. K. Alam, Quazi D. M. Khosru, A low subthreshold swing tunneling field effect transistor for next generation low power CMOS applications, Physica E: Low-dimensional Systems and Nanostructures, Volume 74, 2015, Pages 251–257

  22. D Gracia, D Nirmal, A Nisha Justeena Investigation of Ge based double gate dual metal tunnel FET novel architecture using various hetero dielectric materials. Superlattices and Microstructures, Elsevier;2017, 109(154–160)

  23. Bal P, Ghosh B, Mondal P, Akram MW, Tripathi BMM (2014) Dual material gate junctionless tunnel field effect transistor. Journal J Comput Electron 13(1):230–234

    Article  CAS  Google Scholar 

  24. Abadi RMI, Ziabari SAS (2016). Appl Phys A: Mater Sci Process 122(11):988

    Article  Google Scholar 

  25. Venkatesh M, Balamurugan NB (2019) New subthreshold performance analysis of germanium based dual halo gate stacked triple material surrounding gate tunnel field effect transistor. Superlattices and Microstructures-Elsevier 130:485–498

    Article  CAS  Google Scholar 

  26. Roobert AA, Rani DGN (2019) Design and analysis of 0.9 and 2.3-GHz concurrent dual-band CMOS LNA for mobile communication. Int J Circ Theor Appl:1–14. https://doi.org/10.1002/cta.2688

  27. Silvaco, Version 5.15.32.R., 2009. [Online]. Available http://www.silvaco.com

  28. Hänsch W, Vogelsang T, Kircher R, Orlowski M (1989) Carrier transport near the Si/SiO2 interface of a MOSFET. Solid State Electron 32(10):839–849

    Article  Google Scholar 

  29. Venkatesh M, Suguna M, Balamurugan NB (2019) Subthreshold performance analysis of germanium source dual halo dual dielectric triple material surrounding gate tunnel field effect transistor for ultra low power applications. Journal of Electronic Materials -Springer 48:6724–6734. https://doi.org/10.1007/s11664-019-07492-0

    Article  CAS  Google Scholar 

  30. Schenk, A. A model for the field and temperature dependence of Shockley-Read-Hall lifetimes in silicon. Solid State Electron 1992; 35(11)

  31. Sarkar A, Das AK, De S, Sarkar CK (2012) Effect of gate engineering in double-gate MOSFETs for analog/RF applications. Microelectron J 43(11):873–882

    Article  Google Scholar 

  32. Ku WH (1966) Unilateral gain and stability criterion of active two-ports in terms of scattering parameters. Proc IEEE 54(11):1617–1618

    Article  Google Scholar 

  33. Lide, David R. CRC Handbook of Chemistry and Physics CRC. Boca Raton 2008

  34. Rollett J (1962) Stability and power-gain invariants of linear two ports. IRE Trans Circuit Theory 9(1):29–32

    Article  Google Scholar 

  35. Rahi SB, Ghosh B (2015) High-k double gate junctionless tunnel FET with a tunable bandgap. RSC Adv 5(67):54544–54550

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Venkatesh.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venkatesh, M., Suguna, M. & Balamurugan, N.B. Influence of Germanium Source Dual Halo Dual Dielectric Triple Material Surrounding Gate Tunnel FET for Improved Analog/RF Performance. Silicon 12, 2869–2877 (2020). https://doi.org/10.1007/s12633-020-00385-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-020-00385-6

Keywords

Navigation