Skip to main content
Log in

The Effect of Silicon on the Activity and Isozymes Pattern of Antioxidative Enzymes of Young Maize Roots under Zinc Stress

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The aim of this work was to study the effect of silicon (Si) on the activities of some antioxidative enzymes of young maize plants treated by zinc (Zn). Zinc is an essential element for higher plants but its higher concentrations are toxic for plants. Silicon is not considered as a plant‘s essential element but research has suggested that Si can mitigate the negative effect of various plant stresses. Two maize (Zea mays L.) hybrids, Almansa and Novania, differing in their tolerance to Zn toxicity, were grown in hydroponics and the effect of exogenous Si on the activities of superoxide dismutase (SOD), peroxidase (POX) and ascorbate peroxidase (APX) in the roots of Zn treated plants was studied. The enzymes activities were recorded by spectrophotometry and their isozymes pattern was determined by native PAGE. Silicon mitigated the activity of antioxidative enzymes (SOD, APX and POX) increased by Zn stress in hybrid Almansa but the same effect was not fully observed in hybrid Novania. Our results point out that a positive effect of Si on antioxidative response of Zn treated maize plants is probably hybrid-specific.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sommer AL, Lipman CB (1926) Plant Physiol 1:231–248

    Article  CAS  Google Scholar 

  2. Martinka M, Vaculík M, Lux A (2014). In: Nick P (ed) Applied Plant Cell Biology: Cellular Tools and Approaches for Plant Biotechnology, 1st edn. Springer, London, pp 209–246

  3. Bokor B, Vaculík M, Slováková L’, Masarovič D, Lux A (2014) Acta Physiol Plant 36:733–743

    Article  CAS  Google Scholar 

  4. Englbrecht CC, Schoof H, Böhm S (2004) BMC Genomics 5:1–17

    Article  Google Scholar 

  5. Kumari M, Sinhal VK, Srivastava A, Singh VP (2011) J Phytol 3:43–46

    CAS  Google Scholar 

  6. Chaoui A, Mazhoudi S, Ghorbal MH, Ferjani EE (1997) Plant Sci 127:139–147

    Article  CAS  Google Scholar 

  7. Jain R, Srivastava S, Solomon S, Shrivastava AK, Chandra A (2010) Acta Physiol Plant 32:979–986

    Article  CAS  Google Scholar 

  8. Yang Y, Sun Ch, Yao Y, Zhang Y, Achal V (2011) Acta Physiol Plant 33:1483–1491

    Article  Google Scholar 

  9. Weiss DJ, Mason TFD, Zhao FJ, Kirk GJD, Coles BJ, Horstwood MSA (2005) New Phytol 165:703–710

    Article  CAS  Google Scholar 

  10. Cai K, Gao D, Chen J, Luo S (2009) Plant Signal Behav 4:1–3

    Article  CAS  Google Scholar 

  11. Kaya C, Tuna LA, Sonmez O, Ince F, Higgs D (2009) J Plant Nutr 32:1788–1798

    Article  CAS  Google Scholar 

  12. Vaculík M, Lux A, Luxová M, Tanimoto E, Lichtscheidl I (2009) Environ Exp Bot 67:52–58

    Article  Google Scholar 

  13. Shi Q, Bao Z, Zhu Z, He Y, Qian Q, Yu J (2005) Phytochemistry 66:1551–1559

    Article  CAS  Google Scholar 

  14. Shahanaz G, Shekoofeh E, Kourosh D, Moohamadbagher B (2011) J Med Plant Res 5:5818–5827

    Google Scholar 

  15. Moussa HR (2006) Int J Agric Biol 8:293–297

    CAS  Google Scholar 

  16. Liang Y, Chen Q, Liu Q, Zhang W, Ding R (2003) J Plant Physiol 160:1157–1164

    Article  CAS  Google Scholar 

  17. Arnon DI, Stout PB (1939) Plant Physiol 14:371–375

    Article  CAS  Google Scholar 

  18. Lukačová Kuliková Z, Lux A (2010) Bull Environ Contam Toxicol 85:243–250

    Article  Google Scholar 

  19. Hoagland DR, Arnon DI (1950) Circular 347. California Agricultural Experiment Station. The Collage of Agriculture University of California – Berkeley

  20. Dhindsa RS, Plumb-Dhinsa P, Thorpe TA (1981) J Exp Bot 32:93–101

    Article  CAS  Google Scholar 

  21. Chance B, Maehley AC (1955) Methods Enzymol 11:764–775

    Article  Google Scholar 

  22. Nakano Y, Asada K (1981) Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  23. Donahue JL, Okpodu CM, Cramer CL, Grabau EA, Alscher RG (1997) Plant Physiol 113:249–257

    Article  CAS  Google Scholar 

  24. Pinhero RG, Rao MV, Paliyath G, Murr DP, Fletcher RA (1997) Plant Physiol 114:695–704

    Article  CAS  Google Scholar 

  25. Fang W-Ch, Kao HCh (2000) Plant Sci 158:71–76

    Article  CAS  Google Scholar 

  26. Prasad KVSK, Saradhi PP, Sharmila P (1999) Environ Exp Bot 42:1–10

    Article  CAS  Google Scholar 

  27. Masarovič D, Slováková L’, Bokor B, Bujdoš M, Lux A (2012) Biologia 67:706–712

    Article  Google Scholar 

  28. Zhang F-Q, Wang Y-S, Lou Z-P, Dong J-D (2007) Chemosphere 67:44–50

    Article  CAS  Google Scholar 

  29. Chaoui A, Mazhoudi S, Ghorbal MH, Ferjani EE (1997) Plant Sci 127:139–147

    Article  CAS  Google Scholar 

  30. Song A, Li P, Li Z, Fan F, Nikolic M, Liang Y (2011) Plant Soil 344:319–333

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lenka Šimková.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Šimková, L., Fialová, I., Vaculíková, M. et al. The Effect of Silicon on the Activity and Isozymes Pattern of Antioxidative Enzymes of Young Maize Roots under Zinc Stress. Silicon 10, 2907–2910 (2018). https://doi.org/10.1007/s12633-015-9376-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-015-9376-6

Keywords

Navigation