Skip to main content
Log in

Role of Process Variables on Solid Particle Erosion of Polymer Composites: A Critical Review

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

This paper presents a review of the reported research works that are related to the solid particle erosion behavior of polymers and polymeric composites. Attention is paid to the effects of test parameters such as erodent type, size of the erodent, impingement angle, impact velocity and stand of distance. on the erosion wear rate of polymer composites. Various predictions and models proposed by different authors to describe and quantify the erosion rate are mentioned and their suitability is checked. Recent findings on the erosion response of multi-component hybrid composites are also presented. Lastly the implementation of design of experiments and statistical techniques in making the parametric appraisal of the erosion process of composites is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Finnie I (1996) Some reflections on the past and future of erosion. Wear 186(/187): 1–10

    Google Scholar 

  2. Meng HC, Ludema KC (1995) Solid particle erosion resistance of ductile wrought super alloys and their weld overlay coatings. Wear 181–183:443

    Google Scholar 

  3. Pool K V, Dharan C K H, Finnie I (1986) Erosion wear of composite materials. Wear 107: 1–12

    Article  CAS  Google Scholar 

  4. Aglan H A, Chenock T A Jr (1993) Erosion damage features of polyimide thermoset composites. SAMPE Q: 41–47

  5. Rao P V (1995) Characterization of optical and surface parameters during particle impact damage. ASME/Fluids Eng Publ 23: 87–96

    Google Scholar 

  6. Tennyson R C (1991) LDEF mission update: composites in space. Adv Mater Process 5: 33–36

    Google Scholar 

  7. Kulkarani S M (2001) Influence of matrix modification on the solid particle erosion of glass/epoxy composites. Polym Compos 9: 25–30

    Google Scholar 

  8. Tilly G P (1973) A two stage mechanisms of ductile erosion. Wear 23: 87–96

    Article  Google Scholar 

  9. Ruff A W, Wiederhorn S M (1979) Erosion by solid particle impact. In: Preece CM (ed) Treatise on materials science and technology, vol 16. Academic Press, New York, pp 69–125

    Google Scholar 

  10. Humphrey J A C (1990) Fundamentals of fluid motion in erosion by solid particle impact. Int J Heat Fluid Flow 11(3): 170–195

    Article  CAS  Google Scholar 

  11. Hollaway L (1994) Handbook of polymer composites for engineers, p 1. Woodhead Publishing Ltd., Cambridge

    Book  Google Scholar 

  12. Pritchard G (1999) Reinforced plastics durability, p 1

  13. Mason J S, Smith B V (1972) The erosion of bends by pneumatically conveyed suspensions of abrasive particles. Powder Technol 6: 323–335

    Article  Google Scholar 

  14. Tsai W, Humphrey J A C, Cornet I, Levy A V (1981) Experimental measurement of accelerated erosion in a slurry pot tester. Wear 68: 289–303

    Article  CAS  Google Scholar 

  15. Hojo H, Tsuda K, Yabu T (1986) Erosion damage of polymeric material by slurry. Wear 112: 17–28

    Article  CAS  Google Scholar 

  16. Kumar R, Verma A P, Lal G K (1983) Nozzle wear during the flow of a gas–particle mixture. Wear 91: 33–43

    Article  Google Scholar 

  17. Crowley M S (1969) Influence of particle size on erosion resistance of refractory concretes. Am Ceram Soc Bull 48: 707–710

    Google Scholar 

  18. Wright I G (1979) Proc. corrosion/erosion of coal conversion systems materials. Conf., Berkeley, pp 103–0138

  19. Jansson S A (1982) Proc. corrosion-erosion-wear of materials in emerging fossil energy systems. Berkeley, pp 548–560

  20. Neilson J H, Gilchrist A (1968) An experimental investigation into aspects of erosion in rocket motor tail nozzles. Wear 11: 123–143

    Article  Google Scholar 

  21. Hibbert W A (1965) Helicopter trials over sand and sea. J Roy Aeronaut Soc 69: 769–776

    Article  Google Scholar 

  22. Miyazaki N, Hamaom T (1994) Solid particle erosion of thermoplastic resins reinforced by short fibres. J Comp Mater 28: 871–883

    Article  CAS  Google Scholar 

  23. Barkoula N M, Karger-Kocsis J (2002) Effect of fibre content and relative fibre orientation on the solid particle erosion of gf/pp composites. Wear 252: 80–87

    Article  CAS  Google Scholar 

  24. Tilly G P (1969) Erosion caused by airborne particles. Wear 14(1): 63–79

    Article  Google Scholar 

  25. Zahavi J, Nadiv S, Schmitt GF Jr (1981) Indirect damage in composite materials due to raindrop impact. Wear 72(3): 305–313

    Article  Google Scholar 

  26. Tilly G P, Sage W (1970) The interaction of particle and material behaviour in erosion processes. Wear 16(6): 447–465

    Article  Google Scholar 

  27. Tsiang TH (1989) Sand erosion of fiber composites: Testing and evaluation. In: Chamis CC (ed) Test Methods for Design Allowable for Fibrous Composites, 2. American Society for Testing and Materials, (ASTM) STP I003, 55–74, Philadelphia

  28. Mathias P J, Wu W, Goretta K C, Routbort L J, Groppi D P, Karasek K R (1989) Solid particle erosion of a graphite-fiber reinforced bismaleimide polymer composite. Wear I35: 161–169

    Article  Google Scholar 

  29. Latif A, Ahmed A (1987) Geostatistical estimation of reserves in the abu-tartur phosphate deposits western desert, Egypt. King Fahd University of Petroleum and Minerals, Masters thesis

    Google Scholar 

  30. Karasek K R, Goretta K C, Helberg D A, Routbort J L (1992) Erosion in bismaleimide polymers and bismaleimide polymer composites. J Mater Sci Lett 11: 1143–1144

    Article  CAS  Google Scholar 

  31. Tilly G P (1969) Sand erosion of metals and plastics: A brief review. Wear 14(4): 241–248

    Article  CAS  Google Scholar 

  32. Brandstädter A, Goretta K C, Routbort J L, Groppi D P, Karasek K R (1991) Solid particle erosion of bismaleimide polymers. Wear 147: 155–164

    Article  Google Scholar 

  33. Roy M, Vishwanathan B, Sundararajan G (1994) The solid particle erosion of polymer matrix composites. Wear 17: 149–161

    Article  Google Scholar 

  34. Miyazaki N, Hamao T (1996) Effect of interfacial strength on erosion behaviour of frps. J Comp Mater 30: 35–50

    Article  CAS  Google Scholar 

  35. Barkoula N M, Karger-Kocsis J (2000) Solid particle erosion of unidirectional gf reinforced ep composites with different fbre/matrix adhesion. J Reinforced Plast Comp 19: 1–12

    Google Scholar 

  36. Tewari U S, Harsha A P, Häger A M, Friedrich K (2002) Solid particle erosion of unidirectional carbon fibre reinforced polyetheretherketone composites. Wear 252: 992–1000

    Article  CAS  Google Scholar 

  37. Harsha A P, Tewari U S, Venkatraman B (2003) Solid particle erosion behaviour of various polyaryletherketone composites. Wear 254: 693–712

    Article  CAS  Google Scholar 

  38. Tewari U S, Harsha A P, Hager A M, Friedrich K (2003) Solid particle erosion of carbon fiber and glass fiber-epoxy composites. Compos Sci Technol 63(3): 549–557

    Article  CAS  Google Scholar 

  39. Zhou R, Lu D H, Jiang Y H, Li Q N (2005) Mechanical properties and erosion wear resistance of polyurethane matrix composites. Wear 259: 676–683

    Article  CAS  Google Scholar 

  40. Tsuda K, Kubouchi M, Sakai T, Saputra H A, Mitomo N (2006) General method for predicting the sand erosion rate of GFRP. Wear 260: 1045–1052

    Article  CAS  Google Scholar 

  41. Miyazaki N (2006) Solid particle erosion behavior of FRPs with prior impact damage. J Compos Mater 41: 703–712

    Article  CAS  Google Scholar 

  42. Srivastava V K, Pawar A G (2006) Solid particle erosion of glass fibre reinforced fly ash filled epoxy resin composites. Compos Sci Technol 66: 3021–3028

    Article  CAS  Google Scholar 

  43. Srivastava V K (2006) Effects of wheat starch on erosive wear of e-glass fiber reinforced epoxy resin composite materials. Mater Sci Eng A 435–436: 282–287

    Article  CAS  Google Scholar 

  44. Sınmazcelik T, Taskıran I (2007) Erosive wear behaviour of polyphenylenesulphide (pps) composites. Mater Des 28: 471–2477

    Google Scholar 

  45. Yang N, Nayeb-Hashemi H (2007) The effect of solid particle erosion on the mechanical properties and fatigue life of fiber-reinforced composites. J Compos Mater 41: 559–574

    Article  CAS  Google Scholar 

  46. Rattan R, Bijwe J (2007) Influence of impingement angle on solid particle erosion of carbon fabric reinforced polyetherimide composite. Wear 262: 568–574

    Article  CAS  Google Scholar 

  47. George K (2002) Experimental investigation of composite material, erosion characteristics under conditions encountered in turbofan engines. Doctor of Philosophy, M.S. University of Cincinnati, Cincinnati

    Google Scholar 

  48. Sarı N (2007) Erosive wear behaviour of carbon fibre/polyetherimide composites under low particle speed. Mater Des 28: 351–355

    Article  CAS  Google Scholar 

  49. Harsha A P, Thakre A A (2007). Investigation on solid particle erosion behaviour of polyetherimide and its composites Wear 262: 807–818

    CAS  Google Scholar 

  50. Sinmazcelik T, Fidan S, Günay V (2008) Residual mechanical properties of carbon/polyphenylenesulphide composites after solid particle erosion. Mater Des 29: 1419–1426

    Article  CAS  Google Scholar 

  51. Arjula S, Harsha A P, Ghosh M K (2008) Erosive wear of unidirectional carbon fibre reinforced polyetherimide composite. Mater Lett 62: 3246–3249

    Article  CAS  Google Scholar 

  52. Yang N H, Nayeb-Hashemi H, Vaziri A (2008) Non-destructive evaluation of erosion damage on e-glass/epoxy composites. Compos Part A 39: 56–66

    Article  CAS  Google Scholar 

  53. Harsha A P, Jha S K (2008) Erosive wear studies of epoxy-based composites at normal incidence. Wear 265: 1129–1135

    Article  CAS  Google Scholar 

  54. Patnaik A, Satapathy A, Mahapatra S S, Dash R R (2008) A taguchi approach for investigation of erosion of glass fiber-polyester composites. J Reinf Plast Compos 27(8): 871–888

    Article  CAS  Google Scholar 

  55. Patnaik A, Satapathy A, Mahapatra S S, Dash R R (2008) Parametric optimization of erosion wear of polyester-gf-alumina hybrid composites using taguchi method. J Reinf Plast Compos 27(10): 1039–1058

    Article  CAS  Google Scholar 

  56. Patnaik A, Satapathy A, Mahapatra S S, Dash R R (2008) Implementation of taguchi design for erosion of fiber reinforced polyester composite systems with SiC filler. J Reinf Plast Compos 27(10): 1093–1111

    Article  CAS  Google Scholar 

  57. Patnaik A, Satapathy A, Mahapatra S S, Dash R R (2008) A modeling approach for prediction of erosion behaviour of glass fiber- polyester composites. J Polym Res 15(2): 147–160

    Article  CAS  Google Scholar 

  58. Kim A, Kim L (2009). Solid particle erosion of cfrp composite with different laminate orientations Wear 262: 1922–1926

    Google Scholar 

  59. Suresh A, Harsha A P, Ghosh M K (2009) Solid particle erosion of unidirectional fiber reinforced thermoplastic composites. Wear 267: 1516–1524

    Article  CAS  Google Scholar 

  60. Suresh A, Harsha A P, Ghosh M K (2009) Solid particle erosion studies on polyphenylene sulfide composites and prediction on erosion data using artificial neural networks. Wear 266: 184–193

    Article  CAS  Google Scholar 

  61. Satapathy A, Patnaik A, Pradhan M K (2009) A study on processing, characterization and erosion behaviour of fish (labeo-rohita) scaled filled epoxy matrix composite. Mater Des 30: 2359–2371

    Article  CAS  Google Scholar 

  62. Biswas S, Ray S, Satapathy A, Patnaik A (2009) Erosion wear behaviour of tio 2 filled glass fiber reinforced epoxy composite. Mater Sci An Indian J 5:1–9

  63. Patnaik A, Satapathy A, Biswas S (2010) Effect of particulate fillers on erosion wear of glass polyester composites: a comparative study using taguchi approach. Malays Polym J 5(2): 49–68

    Google Scholar 

  64. Biswas S, Satapathy A (2010) A comparative study on erosion characteristics of red mud filled bamboo-epoxy and glass-epoxy composites. Mater Des 31: 1752–1767

    Article  CAS  Google Scholar 

  65. Mohan N, Natarajan S, Kumaresh Babu S P, Lee J H (2010) Solid particle erosion of uhmwpe filled aramid fabric-epoxy hybrid composites. Adv Mater Res 123–125: 1051–1054

    Article  CAS  Google Scholar 

  66. Fouad A, EI-Meniawi M, Afifi A (2011) Erosion behaviour of epoxy based unidirectional (GFRP) composite materials. Alex Eng J 50: 29–34

    Article  CAS  Google Scholar 

  67. Bagci M (2011) Solid particle erosion behaviour of glass fiber reinforced boric acid filled epoxy resin composites. Tribology International

  68. Bagci M, Imrek H, Khalfan OM (2011) Effects of silicon oxide filler material and fiber orientation on erosive wear of GF/EP composites. World Acad Sci Eng Technol 5:78

  69. Patel B C, Acharya S K, Mishra D (2011) Effect of stacking sequence on the erosive wear behavior of jute and jute-glass fabric reinforced epoxy composite. Int J Eng Sci Technol 3(1): 213–219

    Article  Google Scholar 

  70. Kumar S, Satapathy B K, Patnaik A (2011) Thermo-mechanical correlations to erosion performance of short carbon fiber reinforced vinyl ester resin composites. Mater Des 32: 2260–2268

    Article  CAS  Google Scholar 

  71. Powell K L, Yeomans J A, Smith P A (1997) A study of the erosive wear behaviour of continuous fibre reinforced ceramic matrix composites. Acta Mater 45(1): 321–330

    Article  CAS  Google Scholar 

  72. Barkoula N M, Gremmels J, Karger-Kocsis J (2001) Dependence of solid particle erosion on the cross-link density in an epoxy resin modified by hygro thermally decomposed polyurethane. Wear 247: 100–108

    Article  CAS  Google Scholar 

  73. Miyazaki N, Funakura S (1998) Solid particle erosion behaviour of frp degraded by hot water. J Comp Mater 32(13): 1295–1305

    Article  Google Scholar 

  74. Stachowiak G W, Batchelor A W (1993) In engineering tribology, tribology series 24: 586

  75. Friedrich K (1986) Erosive wear of polymer surfaces by steel ball blasting. J Mater Sci 21: 3317–3332

    Article  CAS  Google Scholar 

  76. Hutching I M (1992) Ductile-brittle transitions and wear maps for the erosion and abrasion of brittle materials. J Phys D Appl Phys 25: 212

    Article  Google Scholar 

  77. Stack M M, Pungwiwat N (1999) Slurry erosion of metallics, polymers and ceramics: particle size effects. Mater Sci Technol 15: 337–334

    Article  CAS  Google Scholar 

  78. Latifi A M (1987) Solid particles erosion in composite materials. Masters thesis. Wichita State University

  79. Gross KJ (1988) Dissertation, Universität Stuttgart

  80. Arnold J C, Hutchings I M (1989) Flux rate effects in the erosive wear of elastomers. J Mater Sci 24: 833–839

    Article  CAS  Google Scholar 

  81. Shipway P H, Hutchings I M (1994) A method for optimizing the particle flux in erosion testing with a gas-blast apparatus. Wear 174: 169–175

    Article  Google Scholar 

  82. Anand K, Hovis S K, Conrad H, Scattergood R O (1987) Flux effect in solid particle erosion testing. Wear 118: 243

    Article  Google Scholar 

  83. Biswas S (2010) Processing. characterization and wear response of particulate filled epoxy based hybrid composites. Ph.D thesis, NIT Rourkela

    Google Scholar 

  84. Barkoula N M, Karger-Kocsis J (2002) Processes and influencing parameters of the solid particle erosion of polymers and their composites: a review. J Mater Sci 37(18): 3807–3820

    Article  CAS  Google Scholar 

  85. Brandt W, Goldsworthy & Associates (2004) Encyclopedia of polymer science and technology. In: Handbook/reference book, 3rd edn. Wiley. ISBN-10: 0-471-27507-7

  86. Rabinowicz E (1979) The wear equation for erosion of metals by abrasive particles. Department of ME., MIT

    Google Scholar 

  87. Finnie I (1958) The mechanism of erosion of ductile metals. In: Proceedings of 3rd US National congress of applied mechanics, pp 527–532

  88. Nesic S (1991) Computation of localized erosion-corrosion in disturbed two-phase flow. PhD thesis. University of Saskatchewan, Saskatoon

    Google Scholar 

  89. Bitter J G A (1963) A study of erosion phenomena part I. Wear 6: 5–21

    Article  Google Scholar 

  90. Bitter J G A (1963) A study of erosion phenomena part II. Wear 6: 169–90

    Article  Google Scholar 

  91. Laitone J A (1979) Erosion prediction near a stagnation point resulting from aerodynamically entrained solid particles. J Aircraft 16(12): 809–814

    Article  Google Scholar 

  92. Salama M M, Venkatesh E S (1983) Evaluation of erosion velocity limitations of offshore gas wells. In: 15th Annual OTC, Houston, TX: May 2–5 OTC No. 4485

  93. Bourgoyne A T (1989) Experimental study of erosion in diverter systems due to sand production, presented at the SPE/IADC drilling conference. New Orleans, LA.SPE/IADC 18716: 807–816

    Google Scholar 

  94. Chase D P, Rybicki E F, Shadley J R (1992) A model for the effect of velocity on erosion of N80 steel tubing due to the normal impingement of solid particles. Trans ASME J Energy Resour Technol 114: 54–64

    Article  Google Scholar 

  95. McLaury BS (1993) A model to predict solid particle erosion in oil field geometries. MS Thesis, The University of Tulsa

  96. Svedeman SJ, Arnold KE (1993) Criteria for sizing multiphase flow lines for erosive/corrosive services. SPE 26569, 68th Annual Technical Conference of the Society of Petroleum Engineers, Houston, Texas

  97. Jordan K (1998) erosion in multiphase production of oil and gas, corrosion 98. Paper No. 58. NACE International Annual Conference, San Antonio

    Google Scholar 

  98. Shirazi S A (2000) Erosion modeling of elbows in multiphase flow. In: Proceedings of 2000 ASME fluids engineering summer meeting, June 11–15, Boston, MA: Paper No. FEDSM, pp 2000–11251

  99. Gomes F C, Ciampini D, Papini M (2004) The effect of inter-particle collisions in international, vol 37, pp 791–807. Erosive streams on the distribution of energy flux incident to a flat surface, tribology

  100. Papini M, Ciampini D, Krajac T, Spelt J K (2003) Computer modelling of interference effects in erosion testing: effect of plume shape. Wear 255(1–6): 85–97

    Article  CAS  Google Scholar 

  101. Gorham D A, Kharaz A H (2000) The measurement of particle rebound characteristics. Powder Technol 112: 193–202

    Article  CAS  Google Scholar 

  102. Wu C, Li L, Thornton C (2003) Rebound behaviour of spheres for plastic impacts. Int J Impact Eng 28: 929–946

    Article  Google Scholar 

  103. Karaz A H, Gorham D A (2000) A study of the restitution coefficient in elastic–plastic impact. Philos Mag Lett 80: 549–559

    Article  Google Scholar 

  104. Molinari J. F., Ortiz M. (2002) A study of solid-particle erosion of metallic targets. Int J Impact Eng 27: 347–358

    Article  Google Scholar 

  105. Kleis I, Hussainova I (1998) Investigation of particle-wall impact process. Wear: 168–173

  106. Hutchings I M, Winter R E, Field J E (1976) Solid particle erosion of metals: the removal of surface material by spherical projectiles, vol 348, pp 379–392

  107. Hutchings I M (1979) Erosion: prevention and useful applications, ASTM STP664, pp 59–76. In: Adler W F (ed) Mechanisms of the erosion of metals by solid particles. American Society for Testing and Materials, Philadelphia

    Chapter  Google Scholar 

  108. Hutchings I M (1977) Deformation of metal surfaces by the oblique impact of square plates. Int J Mech Sci 19: 45–52

    Article  Google Scholar 

  109. Rickerby D G, MacMillan N H (1980) On the oblique impact of a rigid sphere against a rigid plastic solid. Int J Mech Sci 22: 491–494

    Article  Google Scholar 

  110. Hutchings I M, Macmillan N H, Rickerby D G (1981) Further studies of the oblique impact of a hard sphere against a ductile solid. Int J Mech Sci 23(11): 639–646

    Article  Google Scholar 

  111. Sundararajan G, Shewmon P G (1987) The oblique impact of a hard ball against ductile, semi-infinite, target materials – experiment and analysis. Int J Impact Eng 6(1): 3–22

    Article  Google Scholar 

  112. Tirupataiah Y, Venkataraman B, Sundararajan G. (1990) The nature of the elastic rebound of a hard ball impacting on ductile, metallic target materials. Mater Sci Eng A 24: 133–140

    Article  Google Scholar 

  113. Sundararajan G (1991) The depth of the plastic deformation beneath eroded surfaces: the influence of impact angle and velocity, particle shape and material properties. Wear 149: 129–153

    Article  CAS  Google Scholar 

  114. Papini M, Spelt J K (1998) The plowing erosion of organic coatings by spherical particles. Wear 222: 38–48

    Article  CAS  Google Scholar 

  115. Papini M (1999) Organic coating removal by single particle impact. PhD thesis, Department of Mechanical and Industrial Engineering. University of Toronto, Toronto

    Google Scholar 

  116. Papini M, Spelt J K (2000) Impact of rigid angular particles with fully plastic targets – part, I., analysis. Int J Mech Sci 42(5): 991–1006

    Article  Google Scholar 

  117. Papini M, Spelt J K (2000) Impact of rigid angular particles with fully plastic targets – Part II: parametric study of erosion phenomena. Int J Mech Sci 42(5): 1007–1025

    Article  Google Scholar 

  118. Barkoula NM (2002) In Solid particle erosion behaviour of polymers and polymeric composites. (IVW-Schriftreihe 29, Kaiserslautern)

  119. Hutchings I M (1981) A model for the erosion of metals by spherical particles at normal incidence. Wear 70: 269–281

    Article  CAS  Google Scholar 

  120. Brown R, Jun E, Edington J (1982) Mechanisms of solid particle erosive wear for 908 impact on copper and iron. Wear 74: 143–156

    Article  Google Scholar 

  121. Patnaik A, Satapathy A, Mahapatra S S, Dash R R (2009) Tribo-performance of polyester hybrid composites: damage assessment and parameter optimization using taguchi design. Mater Des 30: 57–67

    Article  CAS  Google Scholar 

  122. Patnaik A, Satapathy A, Mahapatra S S, Dash R R (2008) Modeling and prediction of erosion response of glass reinforced polyester-flyash composites. J Reinf Plast Compos 28: 513–536

    Article  CAS  Google Scholar 

  123. Patnaik A, Satapathy A, Mahapatra S S, Dash R R (2008) A comparative study on different ceramic fillers affecting mechanical properties of glass-polyester composites. J Reinf Plast Compos 28: 1305–1318

    Article  CAS  Google Scholar 

  124. Patnaik A, Satapathy A, Mahapatra S S, Dash R R (2008) Erosive wear assesment of glass reinforced polyester-flyash composites using taguchi method. Int Polym Process 13: 192–199

    Article  Google Scholar 

  125. Mahapatra S S, Patnaik A, Satapathy A, Dash R R (2008) Taguchi method applied to parametric appraisal of erosion behaviour of gf-reinforced polyester composites. Wear 265: 214–222

    Article  CAS  Google Scholar 

  126. Biswas S, Satapathy A (2009) Tribo-performance analysis of red mud filled glass-epoxy composites using taguchi experimental design. Mater Des 30: 2841–2853

    Article  CAS  Google Scholar 

  127. Khruschov MM (1974) Principles of abrasive wear. Wear 28: 69–88

    Article  Google Scholar 

  128. Hovis S K, Talia J E, Scattergood R O (1986) Erosion in multiphase systems. Wear 108: 139–155

    Article  CAS  Google Scholar 

  129. Ballout Y A, Hovis S K, Talia J E (1990) Erosion in glass–fiber reinforced epoxy composite. Scr Metall Mater 24: 195–200

    Article  CAS  Google Scholar 

  130. Zahavi J, Schmitt G F (1981) Solid particle erosion of reinforced composite materials. Wear 71: 179–190

    Article  Google Scholar 

  131. Miyazaki N, Takeda N (1993) Solid particle erosion of fiber reinforced plastics. J Compos Mater 27: 21–31

    Article  CAS  Google Scholar 

  132. Hager A, Friedrich K, Dzenis Y A, Paipetis S A (1995) Study on erosion wear of advanced polymer composites. In: Street K. (ed) Proceedings of ICCM- 10, pp 155–162. Whistler, B.C., Canada, Woodhead Publishing Ltd., Cambridge

    Google Scholar 

  133. Marei A I, Izvozchikov P V (1967) Determination of the wear of rubbers in a stream of abrasive. Abrasion of Rubber (MacLaren, London), pp 274–280

  134. Besztercey G, Karger-Kocsis J, Szaplonczay P (1999) Solid particle erosion of electrically insulating silicone and epdm rubber compounds. Polym Bull 42: 717–724

    Article  CAS  Google Scholar 

  135. Fernández J E, Fernandez M D R, Diaz R V, Navarro R T (2003) Abrasive wear analysis using factorial experiment design. Wear 255(1-6): 38–43

    Article  CAS  Google Scholar 

  136. Spuzic S, Zec M, Abhary K, Ghomashchi R, Reid I (1997) Fractional design of experiments applied to a wear simulation. Wear 212(1): 131–139

    Article  CAS  Google Scholar 

  137. Prasad B K (2002) Abrasive wear characteristics of a zinc-based alloy and zinc-alloy/ sic composite. Wear 252(3–4): 250–263

    Article  CAS  Google Scholar 

  138. Deuis R L, Subramanian C, ellup J M (1998) Three-body abrasive wear of composite coatings in dry and wet environments. Wear 214(1): 112–130

    Article  CAS  Google Scholar 

  139. Banerji A, Prasad S V, Surappa M K, Rohatgi P K (1982) Abrasive wear of cast aluminium alloy-zircon particle composites. Wear 82(2): 141–151

    Article  CAS  Google Scholar 

  140. Mondal D P, Das S, Jha A K, Yegneswaran A H (1998) Abrasive wear of al alloy–al 2 o 3 particle composite: a study on the combined effect of load and size of abrasive. Wear 223(1–2): 131–138

    Article  CAS  Google Scholar 

  141. Taguchi G, Konishi S (1987) Orthogonal arrays and linear graphs: tools for quality engineering, p 72. American Supplier Institute Inc. Dearborn, Mich.

  142. Taguchi G (1990) Introduction to quality engineering, asian productivity organization. Tokyo

  143. Phadke M.S (1989) Quality engineering using robust design. Prentice- Hall, Englewood Cliffs, NJ

    Google Scholar 

  144. Wu Y, Moore W H (1986) Quality Engineering: Product & Process Design Optimization. American Supplier Institute Inc., Dearborn

    Google Scholar 

  145. Logothetis N, Haigh A (1987) The statistical flexibility of the taguchi method in the optimization of multi-response processes. Prof Stat 6(7): 10–16

    Google Scholar 

  146. Logothetis N, Haigh A (1988) Characterizing and optimizing multi-response processes by the taguchi method. Qual Reliab Eng Int 4: 159–169

    Article  Google Scholar 

  147. Shoemaker A C, Kacker R N (1988) A methodology for planning experiments in robust product and process design. Qual Reliab Eng Int 4(2): 95–103

    Article  Google Scholar 

  148. Phadke M S, Dehnad K (1988) Optimization of product and process design for quality and cost. Qual Reliab Eng Int 4(2): 105–112

    Article  Google Scholar 

  149. Mahapatra S S, Patnaik A, Khan M S (2006) Development and analysis of wear resistance model for composites of aluminium reinforced with red mud. J Solid Waste Technol Manag 32(1): 28–35

    CAS  Google Scholar 

  150. Mahapatra S S, Patnaik A (2006) Optimization of parameter combinations in wire electrical discharge machining using taguchi method. Indian J Eng Mater Sci 13: 493–502

    Google Scholar 

  151. Mahapatra S S, Patnaik A (2006) Optimization of wire electrical discharge machining (WEDM) process parameters using taguchi method. Int J Adv Manuf Technol 34(9–10): 911–925

    Google Scholar 

  152. Mahapatra S S, Patnaik A (2007) Parametric optimization of wire electrical discharge machining (WEDM) process using taguchi method. J Braz Soc Mech Sci 28(4): 423–430

    Google Scholar 

  153. Mahapatra S S, Patnaik A (2006) Determination of optimal parameters settings in wire electrical discharge machining (WEDM) process using taguchi method. Inst Eng (India) 87: 16–24

    Google Scholar 

  154. Mahapatra S S, Patnaik A (2006) Parametric analysis and optimization of drilling of metal matrix composites based on the taguchi method. Int J Manuf Sci Technol 8(1): 5–12

    Google Scholar 

  155. Mahapatra S S, Patnaik A (2007) Optimization of wire electrical discharge machining (wedm) process parameters using taguchi method. J Manuf Sci Technol 9(2): 129–144

    Google Scholar 

  156. Patnaik A, Satapathy A, Mahapatra SS, Dash RR (2010) Modified erosion wear characteristics of glass-polyester composites by silicon carbide filling: a parametric study using taguchi technique, vol 38, pp 131–152

  157. Sarle WS (1997) Neural network FAQ: Part 1 of 7—Introduction, periodic posting to the use net news group Comp.ai.neural-nets. Available from: ftp://ftp.sas.com/pub/neural/FAQ.html

  158. Velten K, Reinicke R, Friedrich K (2000) Wear volume prediction with artificial neural networks. Tribol Int 33(10): 731–736

    Article  Google Scholar 

  159. Zhang Z, Friedrich K, Velten K (2002) Prediction on tribological properties of short fiber composites is using artificial neural networks. Wear 252(7–8): 668–675

    Article  CAS  Google Scholar 

  160. Kang J Y, Song J H (1998) Neural network applications in determining the fatigue crack opening load. Int J Fatigue 20: 57–69

    Article  CAS  Google Scholar 

  161. Malinova T, Malinov S, Pantev N (2001) Grinding mode identification and surface quality prediction using neural networks in grinding of silicon nitride. Surf Coat Technol 135: 258–267

    Article  CAS  Google Scholar 

  162. Zeng Q, Zu J, Zhang L, Dai G (2002) Designing expert system with artificial neural networks for in situ toughened Si 3 N 4. Mater Des 23: 287–290

    Article  CAS  Google Scholar 

  163. Yescas M A, Bhadieshia H K D H, MacKay D J (2001) Estimation of the amount of retained austenite in austempered ductile irons using neural networks. Mater Sci Eng Part A 311: 162–173

    Article  Google Scholar 

  164. Jain R K, Jain V K, Kalra P K (1999) Modelling of abrasive flow machining process: a neural network approach. Wear 231: 242–248

    Article  CAS  Google Scholar 

  165. Zhang Z, Friedrich K (2003) Artificial neural network applied to polymer composites: a review. Compos Sci Technol 63(14): 2029–2044

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ritesh Kaundal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaundal, R. Role of Process Variables on Solid Particle Erosion of Polymer Composites: A Critical Review. Silicon 9, 223–238 (2017). https://doi.org/10.1007/s12633-014-9191-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-014-9191-5

Keywords

Navigation