Skip to main content
Log in

Most hospital patients at risk for bacterial infection undergo an anesthetic: implications for infection control practices related to the anesthesia workspace

La plupart des patient·es hospitalisé·es à risque d’infection bactérienne bénéficient d’une anesthésie : implications pour les pratiques de contrôle des infections liées à l’espace de travail d’anesthésie

  • Reports of Original Investigations
  • Published:
Canadian Journal of Anesthesia/Journal canadien d'anesthésie Aims and scope Submit manuscript

Abstract

Purpose

Even with nearly 100% compliance with prophylactic antibiotic protocols, many surgical patients (> 5%) develop surgical site infections, some caused by pathogens transmitted from the anesthesia workspace (e.g., anesthesia machine), including multidrug-resistant Staphylococcus aureus. Reducing contamination of the anesthesia workspace substantively reduces the risk of surgical site infections. We estimated the percentage of hospital patients at risk for health care-associated infections who may benefit from the application of basic preventive measures under the control of anesthesia practitioners (e.g., their hand hygiene).

Methods

We conducted a retrospective cohort study which included every patient admitted to the University of Miami Health System from April 2021 through March 2022 for hospitalization, surgery, emergency department visits, or outpatient visits. Lists were created for the start date and times of every parenteral antibiotic administered and every anesthetic.

Results

Among 28,213 patient encounters including parenteral antibiotic(s), more than half (64.3%) also included an anesthetic (99% confidence interval, 62.2 to 66.6). The hypothesis that most antibiotics were administered during encounters when a patient underwent an anesthetic was accepted (P < 0.001). This observation may seem counterintuitive because parenteral antibiotics were administered for fewer than half of the 53,235 anesthetics (34.2%). The result was a consequence of most anesthetics (63.5%) at the health system being conducted in nonoperating room locations, and only 7.2% of such patients received a parenteral antibiotic.

Conclusions

Because approximately two-thirds of patients who receive an intravenous antibiotic also undergo an anesthetic, greater use of effective infection control measures in the anesthesia operating room workspace has the potential to substantively reduce overall rates of hospital infections.

Résumé

Objectif

Même avec un respect de près de 100 % des protocoles antibiotiques prophylactiques, bon nombre de patients et patientes en chirurgie (> 5 %) développent des infections du site opératoire, dont certaines sont causées par des agents pathogènes transmis par l’espace de travail anesthésique (p. ex. appareil d’anesthésie), y compris un staphylocoque doré multirésistant. La réduction de la contamination de l’espace de travail anesthésique réduit considérablement le risque d’infections du site opératoire. Nous avons estimé le pourcentage de patientes et patients hospitalisé·es à risque d’infections associées aux soins de santé qui pourraient bénéficier de l’application de mesures préventives de base sous le contrôle de praticiens et praticiennes d’anesthésie (par exemple, leur hygiène des mains).

Méthode

Nous avons mené une étude de cohorte rétrospective qui comprenait toutes les personnes admises au Système de santé de l’Université de Miami d’avril 2021 à mars 2022 pour une hospitalisation, une intervention chirurgicale, des visites aux urgences ou des consultations externes. Des listes ont été créées pour la date et l’heure de début de chaque antibiotique parentéral administré et de chaque anesthésique.

Résultats

Parmi les 28 213 consultations avec les patient·es comprenant des antibiotiques parentéraux, plus de la moitié (64,3 %) comportaient également un anesthésique (intervalle de confiance à 99 %, 62,2 à 66,6). L’hypothèse selon laquelle la plupart des antibiotiques étaient administrés lors de rencontres lorsqu’une personne bénéficiait d’une anesthésie a été acceptée (P < 0,001). Cette observation peut sembler contre-intuitive, car des antibiotiques parentéraux ont été administrés pour moins de la moitié des 53 235 anesthésiques (34,2 %). En effet, la plupart des anesthésies (63,5 %) ont été administrées en dehors de la salle d’opération, et seulement 7,2 % de cette patientèle a reçu un antibiotique parentéral.

Conclusion

Étant donné qu’environ les deux tiers des patientes et patients qui reçoivent un antibiotique par voie intraveineuse bénéficient également d’une anesthésie, une plus grande utilisation de mesures efficaces de contrôle des infections dans l’espace de travail anesthésique de la salle d’opération pourrait réduire considérablement les taux globaux d’infections hospitalières.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Magill et al. reviewed records of 12,299 patients hospitalized at one of 199 hospitals.17 From their Results section “Prevalence of Antimicrobial Use,” their Results section “Rationale for Antimicrobial Use,” their Supplementary Table 9, and our ESM eAppendix text’s list of parenteral antibiotics included, there were only approximately 1.0% of patients nationwide treated with one of these antibiotics but with no documented rationale for use (0.8%) or use without infection-related reason (0.2%).

References

  1. Rivera A, Sánchez A, Luque S, et al. Intraoperative bacterial contamination and activity of different antimicrobial prophylaxis regimens in primary knee and hip replacement. Antibiotics 2020; 10: 18. https://doi.org/10.3390/antibiotics10010018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. O’Sullivan CT, Rogers WK, Ackman M, Goto M, Hoff BM. Implementation of a multifaceted program to sustainably improve appropriate intraoperative antibiotic redosing. Am J Infect Control 2019; 47: 74–7. https://doi.org/10.1016/j.ajic.2018.06.007

    Article  PubMed  Google Scholar 

  3. Hincker A, Abdallah AB, Avidan M, Candelario P, Helsten D. Electronic medical record interventions and recurrent perioperative antibiotic administration: a before-and-after study. Can J Anesth 2017; 64: 716–23. https://doi.org/10.1007/s12630-017-0885-1

    Article  PubMed  Google Scholar 

  4. Nair BG, Newman SF, Peterson GN, Wu WY, Schwid HA. Feedback mechanisms including real-time electronic alerts to achieve near 100% timely prophylactic antibiotic administration in surgical cases. Anesth Analg 2010; 111: 1293–300. https://doi.org/10.1213/ane.0b013e3181f46d89

    Article  PubMed  Google Scholar 

  5. Loftus RW, Dexter F, Goodheart MJ, et al. The effect of improving basic preventive measures in the perioperative arena on Staphylococcus aureus transmission and surgical site infections: a randomized clinical trial. JAMA Netw Open 2020; 3: e201934. https://doi.org/10.1001/jamanetworkopen.2020.1934

    Article  PubMed  Google Scholar 

  6. Wall RT, Datta S, Dexter F, et al. Effectiveness and feasibility of an evidence-based intraoperative infection control program targeting improved basic measures: a post-implementation prospective case-cohort study. J Clin Anesth 2022; 77: 110632. https://doi.org/10.1016/j.jclinane.2021.110632

    Article  PubMed  Google Scholar 

  7. Corcoran TB, Myles PS, Forbes AB, et al. Dexamethasone and surgical-site infection. N Engl J Med 2021; 384: 1731–41. https://doi.org/10.1056/nejmoa2028982

    Article  CAS  PubMed  Google Scholar 

  8. Krezalek MA, Hyoju S, Zaborin A, et al. Can Methicillin-resistant Staphylococcus aureus silently travel from the gut to the wound and cause postoperative infection? Modeling the “Trojan Horse hypothesis.” Ann Surg 2018; 267: 749–58. https://doi.org/10.1097/sla.0000000000002173

    Article  PubMed  Google Scholar 

  9. Alverdy JC, Hyman N, Gilbert J. Re-examining causes of surgical site infections following elective surgery in the era of asepsis. Lancet Infect Dis 2020; 20: e38–43. https://doi.org/10.1016/s1473-3099(19)30756-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Loftus RW, Dexter F, Robinson AD. High-risk Staphylococcus aureus transmission in the operating room: a call for widespread improvements in perioperative hand hygiene and patient decolonization practices. Am J Infect Control 2018; 46: 1134–41. https://doi.org/10.1016/j.ajic.2018.04.211

    Article  PubMed  Google Scholar 

  11. Loftus RW, Dexter F, Robinson AD, Horswill AR. Desiccation tolerance is associated with Staphylococcus aureus hyper transmissibility, resistance, and infection development in the operating room. J Hosp Infect 2018; 100: 299–308. https://doi.org/10.1016/j.jhin.2018.06.020

    Article  CAS  PubMed  Google Scholar 

  12. Loftus RW, Dexter F, Robinson AD. Methicillin-resistant Staphylococcus aureus has greater risk of transmission in the operating room than methicillin-sensitive S aureus. Am J Infect Control 2018; 46: 520–5. https://doi.org/10.1016/j.ajic.2017.11.002

    Article  PubMed  Google Scholar 

  13. Loftus RW, Dexter F, Brown J. The importance of targeting intraoperative transmission of bacteria with antibiotic resistance and strain characteristics. Am J Infect Control 2022; https://doi.org/10.1016/j.ajic.2022.07.024

    Article  PubMed  Google Scholar 

  14. Koff MD, Loftus RW, Burchman CC, et al. Reduction in intraoperative bacterial contamination of peripheral intravenous tubing through the use of a novel device. Anesthesiology 2009; 110: 978–85. https://doi.org/10.1097/aln.0b013e3181a06ec3

    Article  PubMed  Google Scholar 

  15. Dexter F, Parra MC, Brown JR, Loftus RW. Perioperative COVID-19 defense: an evidence-based approach for optimization of infection control and operating room management. Anesth Analg 2020; 131: 37–42. https://doi.org/10.1213/ane.0000000000004829

    Article  CAS  PubMed  Google Scholar 

  16. Datta S, Dexter F, Suvarnakar A, Abi-Najm D, Wall RT, Loftus RW. Estimating costs of anesthesia supplies for intraoperative infection control. Am J Infect Control 2023; 51: 619–23. https://doi.org/10.1016/j.ajic.2022.07.028

    Article  PubMed  Google Scholar 

  17. Benic MS, Milanic R, Monnier AA, et al. Metrics for quantifying antibiotic use in the hospital setting: results from a systematic review and international multidisciplinary consensus procedure. J Antimicrob Chemother 2018; 73: vi50–8. https://doi.org/10.1093/jac/dky118

  18. Almagor J, Temkin E, Benenson I, Fallach N, Carmeli Y; DRIVE-AB Consortium. The impact of antibiotic use on transmission of resistant bacteria in hospitals: Insights from an agent-based model. PLoS One 2018; 13: e0197111. https://doi.org/10.1371/journal.pone.0197111

  19. Magill SS, O'Leary E, Ray SM, et al. Antimicrobial use in US hospitals: comparison of results from emerging infections program prevalence surveys, 2015 and 2011. Clin Infect Dis 2021; 72: 1784–92. https://doi.org/10.1093/cid/ciaa373

    Article  CAS  PubMed  Google Scholar 

  20. Dexter F, Epstein RH, Loftus RW. Quantifying and interpreting inequality of surgical site infections among operating rooms. Can J Anesth 2021; 68: 812–24. https://doi.org/10.1007/s12630-021-01931-5

    Article  PubMed  Google Scholar 

  21. D'Agata EM, Magal P, Olivier D, Ruan S, Webb GF. Modeling antibiotic resistance in hospitals: the impact of minimizing treatment duration. J Theor Biol 2007; 249: 487–99. https://doi.org/10.1016/j.jtbi.2007.08.011

    Article  PubMed  PubMed Central  Google Scholar 

  22. Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 2022; 399: 629–55. https://doi.org/10.1016/s0140-6736(21)02724-0

    Article  CAS  Google Scholar 

  23. Tiret L, Desmonts JM, Hatton F, Vourc'h G. Complications associated with anaesthesia—a prospective survey in France. Can Anaesth Soc J 1986; 33: 336–44. https://doi.org/10.1007/bf03010747

    Article  CAS  PubMed  Google Scholar 

  24. Li G, Warner M, Lang BH, Huang L, Sun LS. Epidemiology of anesthesia-related mortality in the United States, 1999-2005. Anesthesiology 2009; 110: 759–65. https://doi.org/10.1097/aln.0b013e31819b5bdc

    Article  PubMed  Google Scholar 

  25. Long DR, Alverdy JC, Vavilala MS. Emerging paradigms in the prevention of surgical site infection: the patient microbiome and antimicrobial resistance. Anesthesiology 2022; 137: 252–62. https://doi.org/10.1097/aln.0000000000004267

    Article  PubMed  Google Scholar 

  26. Dexter F, Ledolter J, Epstein RH, Loftus RW. Futility of cluster designs at individual hospitals to study surgical site infections and interventions involving the installation of capital equipment in operating rooms. J Med Syst 2020; 44: 82. https://doi.org/10.1007/s10916-020-01555-0

    Article  PubMed  Google Scholar 

  27. Robinson AD, Dexter F, Renkor V, Reddy S, Loftus RW. Operating room PathTrac analysis of current intraoperative Staphylococcus aureus transmission dynamics. Am J Infect Control 2019; 47: 1240–7. https://doi.org/10.1016/j.ajic.2019.03.028

    Article  PubMed  Google Scholar 

  28. Nagrebetsky A, Gabriel RA, Dutton RP, Urman RD. Growth of nonoperating room anesthesia care in the United States: a contemporary trends analysis. Anesth Analg 2017; 124: 1261–7. https://doi.org/10.1213/ane.0000000000001734

    Article  PubMed  Google Scholar 

Download references

Author contributions

Richard H. Epstein helped with conceptualization; methodology; software; formal analysis; data curation; writing the original draft; writing, reviewing, and editing; and visualization. Franklin Dexter helped with conceptualization; methodology; validation; writing the original draft; and writing, reviewing, and editing. Randy W. Loftus helped with conceptualization and writing, reviewing, and editing.

Disclosures

Dr. Epstein has nothing to disclose. The Division of Management Consulting of the University of Iowa’s Department of Anesthesia provides consultations to hospitals, anesthesia groups, and companies, including for infectious disease products. Dr. Dexter receives no funds personally other than his salary and allowable expense reimbursements from the University of Iowa and has tenure with no incentive program. He and his family have no financial holdings in any company related to his work other than indirectly through mutual funds for retirement. Income from the Division's consulting work is used to fund Division research. A list of all the Division’s consults is available at https://FranklinDexter.net/Contact_Info.htm. Dr. Loftus reports research funding from Sage Medical Inc., B. Braun, Draeger, and Kenall Manufacturing, has one or more patents pending, and is a partner of RDB Bioinformatics, LLC, and 1055 N 115th St 301, Omaha, NE 68154, a company that owns OR PathTrac®, and has spoken at educational meetings sponsored by B. Braun and Kenall Manufacturing. The University of Iowa uses RDB Bioinformatics PathTrac system for measuring bacterial transmission.

Funding statement

This project was supported by the authors’ respective departments.

Editorial responsibility

This submission was handled by Dr. Stephan K. W. Schwarz, Editor-in-Chief, Canadian Journal of Anesthesia/Journal canadien d’anesthésie.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franklin Dexter MD, PhD, FASA.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 146 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Epstein, R.H., Dexter, F. & Loftus, R.W. Most hospital patients at risk for bacterial infection undergo an anesthetic: implications for infection control practices related to the anesthesia workspace. Can J Anesth/J Can Anesth 70, 1330–1339 (2023). https://doi.org/10.1007/s12630-023-02515-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12630-023-02515-1

Keywords

Navigation