Skip to main content
Log in

Research progress in interface modification and thermal conduction behavior of diamond/metal composites

  • Invited Review
  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Diamond/metal composites are widely used in aerospace and electronic packaging fields due to their outstanding high thermal conductivity and low expansion. However, the difference in chemical properties leads to interface incompatibility between diamond and metal, which has a considerable impact on the performance of the composites. To improve the interface compatibility between diamond and metal, it is necessary to modify the interface of composites. This paper reviews the experimental research on interface modification and the application of computational simulation in diamond/metal composites. Combining computational simulation with experimental methods is a promising way to promote diamond/metal composite interface modification research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Li, Q.Y. Zheng, Y.C. Lü, X.Y. Liu, X.Q. Wang, P.Y. Huang, D.G. Cahill, and B. Lü, High thermal conductivity in cubic boron arsenide crystals, Science, 361(2018), No. 6402, p. 579.

    Article  CAS  Google Scholar 

  2. C.L. Wei, X. Xu, B.Z. Wei, J.G. Cheng, and P.Q. Chen, Effect of diamond surface treatment on microstructure and thermal conductivity of diamond/W—30Cu composites prepared by microwave sintering, Diam. Relat. Mater., 104(2020), art. No. 107760.

  3. P.D. Garman, J.M. Johnson, V. Talesara, H. Yang, D. Zhang, J. Castro, W. Lu, J. Hwang, and L.J. Lee, Silicon oxycarbide accelerated chemical vapor deposition of graphitic networks on ceramic substrates for thermal management enhancement, ACS Appl. Nano Mater., 2(2019), No. 1, p. 452.

    Article  CAS  Google Scholar 

  4. Y. Mei, P.Z. Shao, M. Sun, G.Q. Chen, M. Hussain, F.L. Huang, Q. Zhang, X.S. Gao, Y.Y. Pei, S.J. Zhong, and G.H. Wu, Deformation treatment and microstructure of graphene-re-inforced metal matrix nanocomposites: A review of graphene post-dispersion, Int. J. Miner. Metall. Mater., 27(2020), No. 7, p. 888.

    Article  CAS  Google Scholar 

  5. S. Shahsavar, M. Ketabchi, and S. Bagherzadeh, Fabrication of robust aluminum-carbon nanotube composites using ultrasonic assembly and rolling process, Int. J. Miner. Metall. Mater., 28(2021), No. 1, p. 160.

    Article  CAS  Google Scholar 

  6. C.J.H. Wort and R.S. Balmer, Diamond as an electronic material, Mater. Today, 11(2008), No. 1–2, p. 22.

    Article  CAS  Google Scholar 

  7. K.A. Weidenmann, R. Tavangar, and L. Weber, Rigidity of diamond reinforced metals featuring high particle contents, Compos. Sci. Technol., 69(2009), No. 10, p. 1660.

    Article  CAS  Google Scholar 

  8. G.Z. Bai, Y.J. Zhang, X.Y. Liu, J.J. Dai, X.T. Wang, and H.L. Zhang, High-temperature thermal conductivity and thermal cycling behavior of Cu-B/diamond composites, IEEE Trans. Compon. Packag. Manuf. Technol., 10(2020), No. 4, p. 626.

    Article  CAS  Google Scholar 

  9. Z.Q. Tan, D.B. Xiong, G.L. Fan, Z.Z. Chen, Q. Guo, C.P. Guo, G. Ji, Z.Q. Li, and D. Zhang, Enhanced thermal conductivity of diamond/aluminum composites through tuning diamond particle dispersion, J. Mater. Sci., 53(2018), No. 9, p. 6602.

    Article  CAS  Google Scholar 

  10. J.B. Liang, S. Yamajo, M. Kuball, and N. Shigekawa, Room-temperature direct bonding of diamond and Al, Scripta Mater., 159(2019), p. 58.

    Article  CAS  Google Scholar 

  11. Q.Y. Shi, Z.Q. Liu, D. Wu, H. Zhang, D.R. Ni, and K. Suganuma, Fabrication of Ni-P coating film on diamond/Al composite and its soldering reliability, J. Mater. Sci.: Mater. Electron., 29(2018), No. 10, p. 8371.

    CAS  Google Scholar 

  12. G.Q. Chen, W.S. Yang, L. Xin, P.P. Wang, S.F. Liu, J. Qiao, F.J. Hu, Q. Zhang, and G.H. Wu, Mechanical properties of Al matrix composite reinforced with diamond particles with W coatings prepared by the magnetron sputtering method, J. Alloys Compd., 735(2018), p. 777.

    Article  CAS  Google Scholar 

  13. X.Y. Liu, F.Y. Sun, L.H. Wang, Z.X. Wu, X.T. Wang, J.G. Wang, M.J. Kim, and H.L. Zhang, The role of Cr interlayer in determining interfacial thermal conductance between Cu and diamond, Appl. Surf. Sci., 515(2020), art. No. 146046.

  14. G. Chang, F.Y. Sun, L.H. Wang, Z.X. Che, X.T. Wang, J.G. Wang, M.J. Kim, and H.L. Zhang, Regulated interfacial thermal conductance between Cu and diamond by a TiC interlayer for thermal management applications, ACS Appl. Mater. Interfaces, 11(2019), No. 29, p. 26507.

    Article  CAS  Google Scholar 

  15. I.E. Monje, E. Louis, and J.M. Molina, Optimizing thermal conductivity in gas-pressure infiltrated aluminum/diamond composites by precise processing control, Compos. A: Appl. Sci. Manuf., 48(2013), p. 9.

    Article  CAS  Google Scholar 

  16. Y.P. Wu, J.B. Luo, Y. Wang, G.L. Wang, H. Wang, Z.Q. Yang, and G.F. Ding, Critical effect and enhanced thermal conductivity of Cu—diamond composites reinforced with various diamond prepared by composite electroplating, Ceram. Int., 45(2019), No. 10, p. 13225.

    Article  CAS  Google Scholar 

  17. C. Edtmaier, J. Segl, R. Koos, M. Schöbel, and C. Feldbaumer, Characterization of interfacial bonding strength at Al(Si)/diamond interfaces by neutron diffraction: Effect of diamond surface termination and processing conditions, Diam. Relat. Mater., 106(2020), art. No. 107842.

  18. Z. Liang and H.L. Tsai, Effect of thin film confined between two dissimilar solids on interfacial thermal resistance, J. Phys. Condens. Matter, 23(2011), No. 49, p. 495303.

    Article  Google Scholar 

  19. A. Majumdar and P. Reddy, Role of electron-phonon coupling in thermal conductance of metal-nonmetal interfaces, Appl. Phys. Lett., 84(2004), No. 23, p. 4768.

    Article  CAS  Google Scholar 

  20. Z.Q. Tan, Z.Q. Li, D.B. Xiong, G.L. Fan, G. Ji, and D. Zhang, A predictive model for interfacial thermal conductance in surface metallized diamond aluminum matrix composites, Mater. Des., 55(2014), p. 257.

    Article  CAS  Google Scholar 

  21. X.Y. Li, W. Park, Y. Wang, Y.P. Chen, and X.L. Ruan, Reducing interfacial thermal resistance between metal and dielectric materials by a metal interlayer, J. Appl. Phys., 125(2019), No. 4, art. No. 045302.

  22. B.Y. Ju, W.S. Yang, Q. Zhang, M. Hussain, Z.Y. Xiu, J. Qiao, and G.H. Wu, Research progress on the characterization and repair of graphene defects, Int. J. Miner. Metall. Mater., 27(2020), No. 9, p. 1179.

    Article  Google Scholar 

  23. Y. Cui, S.B. Xu, L. Zhang, and S. Guo, Microstructure and thermal properties of diamond-Al composite fabricated by pressureless metal infiltration, Adv. Mater. Res., 150–151(2010), p. 1110.

    Article  Google Scholar 

  24. J.H. Wu, H.L. Zhang, Y. Zhang, J.W. Li, and X.T. Wang, Effect of copper content on the thermal conductivity and thermal expansion of Al-Cu/diamond composites, Mater. Des., 39(2012), p. 87.

    Article  CAS  Google Scholar 

  25. T. Schubert, B. Trindade, T. Weißgärber, and B. Kieback, Interfacial design of Cu-based composites prepared by powder metallurgy for heat sink applications, Mater. Sci. Eng. A, 475(2008), No. 1–2, p. 39.

    Article  Google Scholar 

  26. L. Weber and R. Tavangar, On the influence of active element content on the thermal conductivity and thermal expansion of Cu-X (X = Cr, B) diamond composites, Scripta Mater., 57(2007), No. 11, p. 988.

    Article  CAS  Google Scholar 

  27. L.H. Wang, J.W. Li, G.Z. Bai, N. Li, X.T. Wang, H.L. Zhang, J.G. Wang, and M.J. Kim, Interfacial structure evolution and thermal conductivity of Cu-Zr/diamond composites prepared by gas pressure infiltration, J. Alloys Compd., 781(2019), p. 800.

    Article  CAS  Google Scholar 

  28. Z.Q. Tan, Z.Q. Li, G.L. Fan, Q. Guo, X.Z. Kai, G. Ji, L.T. Zhang, and D. Zhang, Enhanced thermal conductivity in diamond/aluminum composites with a tungsten interface nanolayer, Mater. Des., 47(2013), p. 160.

    Article  CAS  Google Scholar 

  29. Z.F. Che, Q.X. Wang, L.H. Wang, J.W. Li, H.L. Zhang, Y. Zhang, X.T. Wang, J.G. Wang, and M.J. Kim, Interfacial structure evolution of Ti-coated diamond particle reinforced Al matrix composite produced by gas pressure infiltration, Compos. B: Eng., 113(2017), p. 285.

    Article  CAS  Google Scholar 

  30. G. Ji, Z.Q. Tan, Y.G. Lu, D. Schryvers, Z.Q. Li, and D. Zhang, Heterogeneous interfacial chemical nature and bonds in a Wcoated diamond/Al composite, Mater. Charact., 112(2016), p. 129.

    Article  CAS  Google Scholar 

  31. S.D. Ma, N.Q. Zhao, C.S. Shi, E.Z. Liu, C.N. He, F. He, and L.Y. Ma, Mo2C coating on diamond: Different effects on thermal conductivity of diamond/Al and diamond/Cu composites, Appl. Surf. Sci., 402(2017), p. 372.

    Article  CAS  Google Scholar 

  32. Z.F. Che, J.W. Li, Q.X. Wang, L.H. Wang, H.L. Zhang, Y. Zhang, X.T. Wang, J.G. Wang, and M.J. Kim, The formation of atomic-level interfacial layer and its effect on thermal conductivity of W-coated diamond particles reinforced Al matrix composites, Compos. A: Appl. Sci. Manuf., 107(2018), p. 164.

    Article  CAS  Google Scholar 

  33. W.L. Yang, K. Peng, J.J. Zhu, D.Y. Li, and L.P. Zhou, Enhanced thermal conductivity and stability of diamond/aluminum composite by introduction of carbide interface layer, Diam. Relat. Mater., 46(2014), p. 35.

    Article  CAS  Google Scholar 

  34. H.D. Zhang, J.J. Zhang, Y. Liu, F. Zhang, T.X. Fan, and D. Zhang, Unveiling the interfacial configuration in diamond/Cu composites by using statistical analysis of metallized diamond surface, Scripta Mater., 152(2018), p. 84.

    Article  CAS  Google Scholar 

  35. S.B. Ren, X.Y. Shen, C.Y. Guo, N. Liu, J.B. Zang, X.B. He, and X.H. Qu, Effect of coating on the microstructure and thermal conductivities of diamond-Cu composites prepared by powder metallurgy, Compos. Sci. Technol., 71(2011), No. 13, p. 1550.

    Article  CAS  Google Scholar 

  36. L.H. Wang, J.W. Li, Z.F. Che, X.T. Wang, H.L. Zhang, J.G. Wang, and M.J. Kim, Combining Cr pre-coating and Cr alloying to improve the thermal conductivity of diamond particles reinforced Cu matrix composites, J. Alloys Compd., 749(2018), p. 1098.

    Article  CAS  Google Scholar 

  37. M.Y. Yuan, Z.Q. Tan, G.L. Fan, D.B. Xiong, Q. Guo, C.P. Guo, Z.Q. Li, and D. Zhang, Theoretical modelling for interface design and thermal conductivity prediction in diamond/Cu composites, Diam. Relat. Mater., 81(2018), p. 38.

    Article  CAS  Google Scholar 

  38. A.M. Abyzov, M.J. Kruszewski, L. Ciupiński, M. Mazurkiewicz, A. Michalski, and K.J. Kurzydłowski, Diamond—tungsten based coating-copper composites with high thermal conductivity produced by Pulse Plasma Sintering, Mater. Des., 76(2015), p. 97.

    Article  CAS  Google Scholar 

  39. Y.P. Pan, X.B. He, S.B. Ren, M. Wu, and X.H. Qu, High thermal conductivity of diamond/copper composites produced with Cu-ZrC double-layer coated diamond particles, J. Mater. Sci., 53(2018), No. 12, p. 8978.

    Article  CAS  Google Scholar 

  40. H.H. Zou, H. Bai, J.H. Yu, Y. Wang, Q.L. Liao, K. Nishimura, L.M. Zeng, and N. Jiang, Architecting graphene nanowalls on diamond powder surface, Compos. B: Eng., 73(2015), p. 57.

    Article  CAS  Google Scholar 

  41. H.J. Cao, Z.Q. Tan, M.H. Lu, G. Ji, X.J. Yan, C. Di, M.Y. Yuan, Q. Guo, Y.S. Su, A. Addad, Z.Q. Li, and D.B. Xiong, Graphene interlayer for enhanced interface thermal conductance in metal matrix composites: An approach beyond surface metallization and matrix alloying, Carbon, 150(2019), p. 60.

    Article  CAS  Google Scholar 

  42. X.Z. Wu, L.Y. Li, W. Zhang, M.X. Song, W.L. Yang, and K. Peng, Effect of surface roughening on the interfacial thermal conductance of diamond/copper composites, Diam. Relat. Mater., 98(2019), art. No. 107467.

  43. L. Zhang, Q.P. Wei, J.J. An, L. Ma, K.C. Zhou, W.T. Ye, Z.M. Yu, X.P. Gan, C.T. Lin, and J.T. Luo, Construction of 3D interconnected diamond networks in Al-matrix composite for high-efficiency thermal management, Chem. Eng. J., 380(2020), art. No. 122551.

  44. Z.N. Xie, H. Guo, X.M. Zhang, and S.H. Huang, Enhancing thermal conductivity of Diamond/Cu composites by regulating distribution of bimodal diamond particles, Diam. Relat. Mater., 100(2019), art. No. 107564.

  45. K. Yoshida and H. Morigami, Thermal properties of diamond/copper composite material, Microelectron. Reliab., 44(2004), No. 2, p. 303.

    Article  CAS  Google Scholar 

  46. H. Chen, C.C. Jia, S.J. Li, X. Jia, and X. Yang, Selective interfacial bonding and thermal conductivity of diamond/Cu-alloy composites prepared by HPHT technique, Int. J. Miner. Metall. Mater., 19(2012), No. 4, p. 364.

    Article  CAS  Google Scholar 

  47. K. Chu, C.C. Jia, H. Guo, and W.S. Li, On the thermal conductivity of Cu-Zr/diamond composites, Mater. Des., 45(2013), p. 36.

    Article  CAS  Google Scholar 

  48. C.Y. Chung, M.T. Lee, M.Y. Tsai, C.H. Chu, and S.J. Lin, High thermal conductive diamond/Cu-Ti composites fabricated by pressureless sintering technique, Appl. Therm. Eng., 69(2014), No. 1–2, p. 208.

    Article  CAS  Google Scholar 

  49. P. Mańkowski, A. Dominiak, R. Domański, M.J. Kruszewski, and Ł. Ciupiński, Thermal conductivity enhancement of copper—diamond composites by sintering with chromium additive, J. Therm. Anal. Calorim., 116(2014), No. 2, p. 881.

    Article  Google Scholar 

  50. J. Grzonka, M.J. Kruszewski, M. Rosiński, Ł. Ciupiński, A. Michalski, and K.J. Kurzydłowski, Interfacial microstructure of copper/diamond composites fabricated via a powder metallurgical route, Mater. Charact., 99(2015), p. 188.

    Article  CAS  Google Scholar 

  51. L.H. Wang, J.W. Li, M. Catalano, G.Z. Bai, N. Li, J.J. Dai, X.T. Wang, H.L. Zhang, J.G. Wang, and M.J. Kim, Enhanced thermal conductivity in Cu/diamond composites by tailoring the thickness of interfacial TiC layer, Compos. A: Appl. Sci. Manuf., 113(2018), p. 76.

    Article  CAS  Google Scholar 

  52. P.F. Tao, H. Bai, C. Xue, J.L. Lü, and Z.Y. Zhao, Microstructure and thermal properties of diamond/Al composites, Cemented Carbide, 33(2016), No. 2, p. 102.

    CAS  Google Scholar 

  53. C.Y. Guo, X.B. He, S.B. Ren, and X.H. Qu, Effect of (0–40) wt. % Si addition to Al on the thermal conductivity and thermal expansion of diamond/Al composites by pressure infiltration, J. Alloys Compd., 664(2016), p. 777.

    Article  CAS  Google Scholar 

  54. C.Y. Guo, X.B. He, S.B. Ren, and X.H. Qu, Thermal properties of diamond/Al composites by pressure infiltration: Comparison between methods of coating Ti onto diamond surfaces and adding Si into Al matrix, Rare Met., 35(2016), No. 3, p. 249.

    Article  CAS  Google Scholar 

  55. W. Cui, H. Xu, J.H. Chen, S.B. Ren, X.B. He, and X.H. Qu, Effect of sintering on the relative density of Cr-coated diamond/Cu composites prepared by spark plasma sintering, Int. J. Miner. Metall. Mater., 23(2016), No. 6, p. 716.

    Article  CAS  Google Scholar 

  56. Ł. Ciupiński, M.J. Kruszewski, J. Grzonka, M. Chmielewski, R. Zielińsk, D. Moszczyńska, and A. Michalski, Design of interfacial Cr3C2 carbide layer via optimization of sintering parameters used to fabricate copper/diamond composites for thermal management applications, Mater. Des., 120(2017), p. 170.

    Article  Google Scholar 

  57. Y.H. Sun, L.K. He, C. Zhang, Q.N. Meng, B.C. Liu, K. Gao, M. Wen, and W.T. Zheng, Enhanced tensile strength and thermal conductivity in copper diamond composites with B4C coating, Sci. Rep., 7(2017), art. No. 10727.

  58. J.H. Jia, S.X. Bai, D.G. Xiong, J. Wang, and J. Chang, Effect of tungsten based coating characteristics on microstructure and thermal conductivity of diamond/Cu composites prepared by pressueless infiltration, Ceram. Int., 45(2019), No. 8, p. 10810.

    Article  CAS  Google Scholar 

  59. S.H. Huang, H. Guo, Z. Zhang, X.M. Zhang, H.F. Xie, Z.N. Xie, L.J. Peng, and X.J. Mi, Comparative study on the properties and microscopic mechanism of Ti coating and W coating diamond-copper composites, Mater. Res. Express, 7(2020), No. 7, art. No. 076517.

  60. L. Lei, L. Bolzoni, and F. Yang, High thermal conductivity and strong interface bonding of a hot-forged Cu/Ti-coated-diamond composite, Carbon, 168(2020), p. 553.

    Article  CAS  Google Scholar 

  61. Y.Q. Li, H.Y. Zhou, C.J. Wu, Z. Yin, C. Liu, Y. Huang, J.Y. Liu, and Z.L. Shi, The interface and fabrication process of diamond/Cu composites with nanocoated diamond for heat sink applications, Metals, 11(2021), No. 2, art. No. 196.

  62. C. Xue and J.K. Yu, Enhanced thermal conductivity in diamond/aluminum composites: Comparison between the methods of adding Ti into Al matrix and coating Ti onto diamond surface, Surf. Coat. Technol., 217(2013), p. 46.

    Article  CAS  Google Scholar 

  63. Y. Zhang, J.W. Li, L.L. Zhao, and X.T. Wang, Optimisation of high thermal conductivity Al/diamond composites produced by gas pressure infiltration by controlling infiltration temperature and pressure, J. Mater. Sci., 50(2015), No. 2, p. 688.

    Article  CAS  Google Scholar 

  64. L. Xin, X. Tian, W.S. Yang, G.Q. Chen, J. Qiao, F.J. Hu, Q. Zhang, and G.H. Wu, Enhanced stability of the Diamond/Al composites by W coatings prepared by the magnetron sputtering method, J. Alloys Compd., 763(2018), p. 305.

    Article  CAS  Google Scholar 

  65. C. Zhang, R.C. Wang, Z.Y. Cai, C.Q. Peng, and N.G. Wang, Low-temperature densification of diamond/Cu composite prepared from dual-layer coated diamond particles, J. Mater. Sci.: Mater. Electron., 26(2015), No. 1, p. 185.

    CAS  Google Scholar 

  66. C. Zhang, R.C. Wang, Z.Y. Cai, C.Q. Peng, Y. Feng, and L. Zhang, Effects of dual-layer coatings on microstructure and thermal conductivity of diamond/Cu composites prepared by vacuum hot pressing, Surf. Coat. Technol., 277(2015), p. 299.

    Article  CAS  Google Scholar 

  67. X.Z. Wu, D.Q. Wan, W. Zhang, M.X. Song, and K. Peng, Constructing efficient heat transfer channels at the interface of Diamond/Cu composites, Compos. Interfaces, 28(2021), No. 6, p. 625.

    Article  CAS  Google Scholar 

  68. R. Tavangar, J.M. Molina, and L. Weber, Assessing predictive schemes for thermal conductivity against diamond-reinforced silver matrix composites at intermediate phase contrast, Scripta Mater., 56(2007), No. 5, p. 357.

    Article  CAS  Google Scholar 

  69. D.P.H. Hasselman and L.F. Johnson, Effective thermal conductivity of composites with interfacial thermal barrier resistance, J. Compos. Mater., 21(1987), No. 6, p. 508.

    Article  Google Scholar 

  70. M. Mohr, K. Brühne, and H.J. Fecht, Thermal conductivity of nanocrystalline diamond films grown by hot filament chemical vapor deposition, Phys. Status Solidi A, 213(2016), No. 10, p. 2590.

    Article  CAS  Google Scholar 

  71. G. Chang, F.Y. Sun, J.L. Duan, Z.F. Che, X.T. Wang, J.G. Wang, M.J. Kim, and H.L. Zhang, Effect of Ti interlayer on interfacial thermal conductance between Cu and diamond, Acta Mater., 160(2018), p. 235.

    Article  CAS  Google Scholar 

  72. G. Chang, F.Y. Sun, L.H. Wang, Y. Zhang, X.T. Wang, J.G. Wang, M.J. Kim, and H.L. Zhang, Mo-interlayer-mediated thermal conductance at Cu/diamond interface measured by time-domain thermoreflectance, Compos. A: Appl. Sci. Manuf., 135(2020), art. No. 105921.

  73. U. Bhandari, C.Y. Zhang, S.M. Guo, and S.Z. Yang, First-principles study on the mechanical and thermodynamic properties of MoNbTaTiW, Int. J. Miner. Metall. Mater., 27(2020), No. 10, p. 1398.

    Article  CAS  Google Scholar 

  74. X.R. Shi, S.M. Huang, Y. Huang, Y.J. Zhang, S.B. Zong, S.S. Xu, Y.Y. Chen, and P. Ma, Atomic structures and electronic properties of Ni or N modified Cu/diamond interface, J. Phys.: Condens. Matter, 32(2020), No. 22, art. No. 225001.

  75. C. Monachon, G. Schusteritsch, E. Kaxiras, and L. Weber, Qualitative link between work of adhesion and thermal conductance of metal/diamond interfaces, J. Appl. Phys., 115(2014), No. 12, art. No. 123509.

  76. H.N. Xie, Y.T. Chen, T.B. Zhang, N.Q. Zhao, C.S. Shi, C.N. He, and E.Z. Liu, Adhesion, bonding and mechanical properties of Mo doped diamond/Al (Cu) interfaces: A first principles study, Appl. Surf. Sci., 527(2020), art. No. 146817.

  77. L. Chen, S.T. Chen, and Y. Hou, Understanding the thermal conductivity of diamond/copper composites by first-principles calculations, Carbon, 148(2019), p. 249.

    Article  CAS  Google Scholar 

  78. C. Zhang, Z.Y. Cai, Y.G. Tang, R.C. Wang, C.Q. Peng, and Y. Feng, Microstructure and thermal behavior of diamond/Cu composites: Effects of surface modification, Diam. Relat. Mater., 86(2018), p. 98.

    Article  CAS  Google Scholar 

  79. Z.B. Sun, Z.R. Tian, L. Weng, Y. Liu, J.J. Zhang, and T.X. Fan, The effect of thermal mismatch on the thermal conductance of Al/SiC and Cu/diamond composites, J. Appl. Phys., 127(2020), No. 4, art. No. 045101.

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 52071117 and 51771063) and the Heilongjiang Provincial Science Fund for Distinguished Young Scholars (No. JQ2021E002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pingping Wang, Ziyang Xiu or Qiang Zhang.

Additional information

Conflict of Interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, P., Wang, P., Shao, P. et al. Research progress in interface modification and thermal conduction behavior of diamond/metal composites. Int J Miner Metall Mater 29, 200–211 (2022). https://doi.org/10.1007/s12613-021-2339-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-021-2339-6

Keywords

Navigation