Skip to main content
Log in

Oxidation resistance of powder metallurgy Ti—45Al—10Nb alloy at high temperature

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

TiAl alloy with high Nb content, nominally Ti—45Al—10Nb, was prepared by powder metallurgy, and the oxidation resistance at 850, 900, and 950°C was investigated. The high-temperature oxidation-resistance mechanism and oxidation dynamics were discussed following the oxide skin morphology and microstructural evolution analysis. The oxide skin structures were similar for 850 and 900°C, with TiO2+Al2O3 mixture covering TiO2 with dispersed Nb2O5. At 950°C, the oxide skin was divided into four sublayers, from the outside to the parent metal: loose TiO2+Al2O3, dense Al2O3, dense TiO2+Nb2O5, and TiO2 matrix with dispersed Nb2O5. The Nb layer suppressed the outward diffusion of Ti atoms, hindering the growth of TiO2, and simultaneously promote the formation of a continuous Al2O3 protective layer, providing the alloy with long-term high-temperature oxidation resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Naka, M. Thomas, and T. Khan, Potential and prospects of some intermetallic compounds for structural applications, [in] C.T. Liu, R.W. Cahn, and G. Sauthoff, eds., Ordered Intermetallics—Physical Metallurgy and Mechanical Behaviour, NATO ASI Series, vol 213. Springer, Dordrecht, 1992.

    Google Scholar 

  2. K. Uenishi and K.F. Kobayashi, Processing of intermetallic compounds for structural applications at high temperature, Intermetallics, 4(1996), Suppl.1, p. S95.

    Article  CAS  Google Scholar 

  3. J.P. Lin, X.J. Xu, Y.L. Wang, S.F. He, Y. Zhang, X.P. Song, and G.L. Chen, High temperature deformation behaviors of a high Nb containing TiAl alloy, Intermetallics, 15(2007), No. 5–6, p. 668.

    Article  CAS  Google Scholar 

  4. G. Chen, Y.B. Peng, G. Zheng, Z.X. Qi, M.Z. Wang, H.C. Yu, C.L. Dong, and C.T. Liu, Polysynthetic twinned TiAl single crystals for high-temperature applications, Nat. Mater., 15(2016), No. 8, p. 876.

    Article  CAS  Google Scholar 

  5. Y.W. Kim and S.L. Kim, Advances in gammalloy materials-processes-application technology: Successes, dilemmas, and future, JOM, 70(2018), No. 4, p. 553.

    Article  Google Scholar 

  6. H. Wu and G.H. Fan, An overview of tailoring strain delocalization for strength-ductility synergy, Prog. Mater. Sci., 113(2020), art. No. 100675.

  7. H. Wu, G.H. Fan, M. Huang, L. Geng, X.P. Cui, and H.L. Xie, Deformation behavior of brittle/ductile multilayered composites under interface constraint effect, Int. J. Plast., 89(2017), p. 96.

    Article  CAS  Google Scholar 

  8. W. Yu, J.X. Zhou, Y.J. Yin, Z.X. Tu, X. Feng, H. Nan, J.P. Lin, and X.F. Ding, Effects of heat treatments on microstructures of TiAl alloys, Int. J. Miner. Metall. Mater., 29(2022), No. 6, p. 1225.

    Article  CAS  Google Scholar 

  9. F. Appel, H. Clemens, and F.D. Fischer, Modeling concepts for intermetallic titanium aluminides, Prog. Mater. Sci., 81(2016), p. 55.

    Article  CAS  Google Scholar 

  10. H. Clemens and S. Mayer, Intermetallic titanium aluminides in aerospace applications — processing, microstructure and properties, Mater. High Temp., 33(2016), No. 4–5, p. 560.

    Article  CAS  Google Scholar 

  11. B.P. Bewlay, S. Nag, A. Suzuki, and M.J. Weimer, TiAl alloys in commercial aircraft engines, Mater. High Temp., 33(2016), No. 4–5, p. 549.

    Article  CAS  Google Scholar 

  12. L.L. Xiang, L.L. Zhao, Y.L. Wang, L.Q. Zhang, and J.P. Lin, Synergistic effect of Y and Nb on the high temperature oxidation resistance of high Nb containing TiAl alloys, Intermetallics, 27(2012), p. 6.

    Article  CAS  Google Scholar 

  13. H. Wu, M. Huang, X.W. Li, Y.P. Xia, Z. Wang, and G.H. Fan, Temperature-dependent reversed fracture behavior of multilayered TiBw/Ti-Ti(Al) composites, Int. J. Plast., 141(2021), art. No. 102998.

  14. J.J. Dai, J.Y. Zhu, C.Z. Chen, and F. Weng, High temperature oxidation behavior and research status of modifications on improving high temperature oxidation resistance of titanium alloys and titanium aluminides: A review, J. Alloys Compd., 685(2016), p. 784.

    Article  CAS  Google Scholar 

  15. J.J. Dai, H.J. Yu, J.Y. Zhu, F. Weng, and C.Z. Chen, Mechanical properties and high temperature oxidation behavior of Ti-Al coating reinforced by nitrides on Ti-6Al-4V alloy, Surf. Rev. Lett., 23(2016), No. 5, art. No. 1650031.

  16. Y.D. Fu, X.Q. Niu, L.J. Zhang, F. Yan, J. Zheng, and X.L. Meng, Phase composition of hot-dipped Ti-Al cladding on Ti6Al4V alloy, Heat Treat. Met., 40(2015), No. 3, p. 62.

    CAS  Google Scholar 

  17. X.M. Peng, C.Q. Xia, Z.H. Wang, Z. Huang, and J.H. Wang, Development of high temperature oxidation and protection of TiAl-based alloy, Chin. J. Nonferrous Met., 20(2010), No. 6, p. 1116.

    CAS  Google Scholar 

  18. W. Przybilla and M. Schütze, Growth stresses in the oxide scales on TiAl alloys at 800 and 900°C, Oxid. Met., 58(2002), No. 3/4, p. 337.

    Article  CAS  Google Scholar 

  19. C. Leyens, R. Braun, M. Fröhlich, and P.E. Hovsepian, Recent progress in the coating protection of gamma titanium-aluminides, JOM, 58(2006), No. 1, p. 17.

    Article  CAS  Google Scholar 

  20. A. Rahmel, M. Schütze, and W.J. Quadakkers, Fundamentals of TiAl oxidation—A critical review, Werkst. Korros., 46(1995), No. 5, p. 271.

    Article  CAS  Google Scholar 

  21. J.J. Dai, J.Y. Zhu, L. Zhuang, and S.Y. Li, Effect of surface aluminizing on long-term high-temperature thermal stability of TC4 titanium alloy, Surf. Rev. Lett., 23(2016), No. 2, art. No. 1550102.

  22. M. Yoshihara and K. Miura, Effects of Nb addition on oxidation behavior of TiAl, Intermetallics, 3(1995), No. 5, p. 357.

    Article  CAS  Google Scholar 

  23. X.Y. Cheng, X.J. Wan, and J.N. Shen, The effect of Nb on the oxida-tion behavior of TiAl alloy at high temperature, J. Chin. Soc. Corros. Prot., 22(2002), No. 2, p. 69.

    CAS  Google Scholar 

  24. S.H. Ouyang, B. Liu, J.B. Li, L.Y. Xu, and Y. Liu, Effect of Nb on high temperature oxidation behavior of powder metallurgy TiAl based alloy, Mater. Sci. Eng. Powder Metall., 20(2015), No. 4, p. 616.

    Google Scholar 

  25. S. Taniguchi, Y. Tachikawa, and T. Shibata, Influence of oxygen partial pressure on the oxidation behaviour of TiAl at 1300 K, Mater. Sci. Eng. A, 232(1997), No. 1–2, p. 47.

    Article  Google Scholar 

  26. K. Kovács, I.V. Perczel, V.K. Josepovits, G. Kiss, F. Réti, and P. Deák, In situ surface analytical investigation of the thermal oxidation of Ti-Al intermetallics up to 1000°C, Appl. Surf. Sci., 200(2002), No. 1–4, p. 185.

    Article  Google Scholar 

  27. T.N. Taylor and M.T. Paffett, Oxide properties of a γ-TiAl: A surface science study, Mater. Sci. Eng. A, 153(1992), No. 1–2, p. 584.

    Article  Google Scholar 

  28. S. Das, The Al—O—Ti (Aluminum-oxygen-titanium) system, J. Phase Equilibria, 23(2002), No. 6, p. 525.

    Article  CAS  Google Scholar 

  29. H.L. Du, P.K. Datta, Z. Klusek, and J.S. Burnell-Gray, Nanoscale studies of the early stages of oxidation of a TiAl-base alloy, Oxid. Met., 62(2004), No. 3–4, p. 175.

    Article  CAS  Google Scholar 

  30. J. Shen, L. Zhou, and T. Li, Effects of surface-applied ceria on the stability of thermally growing chromia scale of FeCr alloys and 310steel, J. Mater. Sci., 33(1998), No. 24, p. 5815.

    Article  CAS  Google Scholar 

  31. D. Vojtěch, J. Čížkovský, P. Novák, J. Šerák, and T. Fabián, Effect of niobium on the structure and high-temperature oxidation of TiAl—Ti5Si3 eutectic alloy, Intermetallics, 16(2008), No. 7, p. 896.

    Article  Google Scholar 

  32. S.K. Varma, A. Chan, and B.N. Mahapatra, Static and cyclic oxidation of Ti-44Al and Ti-44Al-xNb alloys, Oxid. Met., 55(2001), No. 5/6, p. 423.

    Article  CAS  Google Scholar 

  33. M. Yoshihara and Y.W. Kim, Oxidation behavior of gamma alloys designed for high temperature applications, Intermetallics, 13(2005), No. 9, p. 952.

    Article  CAS  Google Scholar 

  34. M. Eckert, D. Kath, and K. Hilpert, Thermodynamic activities in the alloys of the Ti-Al-Nb system, Metall. Mater. Trans. A, 30(1999), No. 5, p. 1315.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51704088), the Natural Science Foundation of Heilongjiang Province of China (No. YQ2020E030), and the Young Innovative Talents Training Plan of Heilongjiang Province, China (No. UNPY-SCT-2017084).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuewen Li.

Additional information

Conflict of Interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, X., Ye, P., Ji, H. et al. Oxidation resistance of powder metallurgy Ti—45Al—10Nb alloy at high temperature. Int J Miner Metall Mater 29, 2232–2240 (2022). https://doi.org/10.1007/s12613-021-2320-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-021-2320-4

Keywords

Navigation