Skip to main content
Log in

High-performance lithium-sulfur battery based on porous N-rich g-C3N4 nanotubes via a self-template method

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

The commercial development of lithium-sulfur batteries (Li-S) is severely limited by the shuttle effect of lithium polysulfides (LPSs) and the non-conductivity of sulfur. Herein, porous g-C3N4 nanotubes (PCNNTs) are synthesized via a self-template method and utilized as an efficient sulfur host material. The one-dimensional PCNNTs have a high specific surface area (143.47 m2·g−1) and an abundance of macro-/mesopores, which could achieve a high sulfur loading rate of 74.7wt%. A Li-S battery bearing the PCNNTs/S composite as a cathode displays a low capacity decay of 0.021% per cycle over 800 cycles at 0.5 C with an initial capacity of 704.8 mAh·g−1. PCNNTs with a tubular structure could alleviate the volume expansion caused by sulfur and lithium sulfide during charge/discharge cycling. High N contents could greatly enhance the adsorption capacity of the carbon nitride for LPSs. These synergistic effects contribute to the excellent cycling stability and rate performance of the PCNNTs/S composite electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.L. Zhang, F. Zhang, H.L. Pan, J. Yu, L. Wang, D. Wang, L.B. Wang, G. Hu, J.H. Zhang, and Y.T. Qian, Dual taming of polysufides by phosphorus-doped carbon for improving electrochemical performances of lithium-sulfur battery, Electrochim. Acta, 354(2020), art. No. 136648.

  2. A. Iqbal, L. Chen, Y. Chen, Y.X. Gao, F. Chen, and D.C. Li, Lithium-ion full cell with high energy density using nickel-rich LiNi0.8Co0.1Mn0.1O2 cathode and SiO-C composite anode, Int. J. Miner. Metall. Mater., 25(2018), No. 12, p. 1473.

    Article  CAS  Google Scholar 

  3. Y.C. Xue, M.Y. Gao, M.R. Wu, D.Q. Su, X.M. Guo, J. Shi, M.T. Duan, J.L. Chen, J.H. Zhang, and Q.H. Kong, A promising hard carbon-soft carbon composite anode with boosting sodium storage performance, ChemElectroChem, 7(2020), No. 19, p. 4010.

    Article  CAS  Google Scholar 

  4. K.L. Cheng, D.B. Mu, B.R. Wu, L. Wang, Y. Jiang, and R. Wang, Electrochemical performance of a nickel-rich LiNi0.6Co0.2Mn0.2O2 cathode material for lithium-ion batteries under different cut-off voltages, Int. J. Miner. Metall. Mater., 24(2017), No. 3, p. 342.

    Article  CAS  Google Scholar 

  5. X.M. Guo, C. Qian, X.H. Wan, W. Zhang, H.W. Zhu, J.H. Zhang, H.X. Yang, S.L. Lin, Q.H. Kong, and T.X. Fan, Facile in situ fabrication of biomorphic Co2P-Co3O4/rGO/C as an efficient electrocatalyst for the oxygen reduction reaction, Nanoscale, 12(2020), No. 7, p. 4374.

    Article  CAS  Google Scholar 

  6. J.X. Wu, Y.L. Cao, H.M. Zhao, J.F. Mao, and Z.P. Guo, The critical role of carbon in marrying silicon and graphite anodes for high-energy lithium-ion batteries, Carbon Energy, 1(2019), No. 1, p. 57.

    Article  CAS  Google Scholar 

  7. Y.J. Liu, P. He, and H.S. Zhou, Rechargeable solid-state Li-air and Li-S batteries: Materials, construction, and challenges, Adv. Energy Mater., 8(2018), No. 4, art. No. 1701602.

  8. A. Manthiram, S.H. Chung, and C.X. Zu, Lithium-sulfur batteries: Progress and prospects, Adv. Mater., 27(2015), No. 12, p. 1980.

    Article  CAS  Google Scholar 

  9. Z.Q. Ye, Y. Jiang, L. Li, F. Wu, and R.J. Chen, A high-efficiency CoSe electrocatalyst with hierarchical porous polyhedron nanoarchitecture for accelerating polysulfides conversion in Li-S batteries, Adv. Mater., 32(2020), No. 32, art. No. 2002168.

  10. H.J. Peng, J.Q. Huang, X.B. Cheng, and Q. Zhang, Review on high-loading and high-energy lithium-sulfur batteries, Adv. Energy Mater., 7(2017), No. 24, art. No. 1700260.

  11. Z.Y. Xing, G.R. Li, S. Sy, and Z.W. Chen, Recessed deposition of TiN into N-doped carbon as a cathode host for superior Li-S batteries performance, Nano Energy, 54(2018), p. 1.

    Article  CAS  Google Scholar 

  12. C.W. Shi, K.A. Owusu, X.M. Xu, T. Zhu, G.B. Zhang, W. Yang, and L.Q. Mai, 1D carbon-based nanocomposites for electrochemical energy storage, Small, 15(2019), No. 48, art. No. 1902348.

  13. Q.P. Wu, X.J. Zhou, J. Xu, F.H. Cao, and C.L. Li, Carbon-based derivatives from metal-organic frameworks as cathode hosts for Li-S batteries, J. Energy Chem., 38(2019), p. 94.

    Article  Google Scholar 

  14. Z.H. Fang, Y.F. Luo, H.C. Wu, L.J. Yan, F. Zhao, Q.Q. Li, S.S. Fan, and J.P. Wang, Mesoporous carbon nanotube aerogel-sulfur cathodes: A strategy to achieve ultrahigh areal capacity for lithium-sulfur batteries via capillary action, Carbon, 166(2020), p. 183.

    Article  CAS  Google Scholar 

  15. G.Z. Liu, Z. Zhang, W.Z. Tian, W.H. Chen, B.J. Xi, H.B. Li, J.K. Feng, and S.L. Xiong, Ni12P5 nanoparticles bound on graphene sheets for advanced lithium-sulfur batteries, Nanoscale, 12(2020), No. 19, p. 10760.

    Article  CAS  Google Scholar 

  16. K.F. Chen and D.F. Xue, Multiple functional biomass-derived activated carbon materials for aqueous supercapacitors, lithium-ion capacitors and lithium-sulfur batteries, Chin. J. Chem., 35(2017), No. 6, p. 861.

    Article  CAS  Google Scholar 

  17. Y.B. Dou, W.J. Zhang, and A. Kaiser, Electrospinning of metal-organic frameworks for energy and environmental applications, Adv. Sci., 7(2020), No. 3, art. No. 1902590.

  18. T. Tang, T. Zhang, W. Li, X.X. Huang, X.B. Wang, H.L. Qiu, and Y.L. Hou, Mesoporous N-doped graphene prepared by a soft-template method with high performance in Li-S batteries, Nanoscale, 11(2019), No. 15, p. 7440.

    Article  CAS  Google Scholar 

  19. Q.J. Shao, Z.S. Wu, and J. Chen, Two-dimensional materials for advanced Li-S batteries, Energy Storage Mater., 22(2019), p. 284.

    Article  Google Scholar 

  20. Z.X. Zeng, K.X. Li, K. Wei, Y.H. Dai, L.S. Yan, H.Q. Guo, and X.B. Luo, Fabrication of porous g-C3N4 and supported porous g-C3N4 by a simple precursor pretreatment strategy and their efficient visible-light photocatalytic activity, Chin. J. Catal., 38(2017), No. 3, p. 498.

    Article  CAS  Google Scholar 

  21. H.S. Zhai, L. Cao, and X.H. Xia, Synthesis of graphitic carbon nitride through pyrolysis of melamine and its electrocatalysis for oxygen reduction reaction, Chin. Chem. Lett., 24(2013), No. 2, p. 103.

    Article  CAS  Google Scholar 

  22. Z.Y. Jia, H.Z. Zhang, Y. Yu, Y.Q. Chen, J.W. Yan, X.F. Li, and H.M. Zhang, Trithiocyanuric acid derived g-C3N4 for anchoring the polysulfide in Li-S batteries application, J. Energy Chem., 43(2020), p. 71.

    Article  Google Scholar 

  23. B. Song, Z.T. Zeng, G.M. Zeng, J.L. Gong, R. Xiao, S.J. Ye, M. Chen, C. Lai, P. Xu, and X. Tang, Powerful combination of g-C3N4 and LDHs for enhanced photocatalytic performance: A review of strategy, synthesis, and applications, Adv. Colloid Interface Sci., 272(2019), art. No. 101999.

  24. X. Li, K. Pan, Y. Qu, and G.F. Wang, One-dimension carbon self-doping g-C3N4 nanotubes: Synthesis and application in dye-sensitized solar cells, Nano Res., 11(2018), No. 3, p. 1322.

    Article  CAS  Google Scholar 

  25. Z.H. Bian, T. Yuan, Y. Xu, Y.P. Pang, H.F. Yao, J. Li, J.H. Yang, and S.Y. Zheng, Boosting Li-S battery by rational design of freestanding cathode with enriched anchoring and catalytic N-sites carbonaceous host, Carbon, 150(2019), p. 216.

    Article  CAS  Google Scholar 

  26. D. Zhang, X.M. Guo, X.Z. Tong, Y.F. Chen, M.T. Duan, J. Shi, C.W. Jiang, L.L. Hu, Q.H. Kong, and J.H. Zhang, High-performance battery-type supercapacitor based on porous biocarbon and biocarbon supported Ni-Co layered double hydroxide, J. Alloys Compd., 837(2020), art. No. 155529.

  27. D.Q. Su, M. Huang, J.H. Zhang, X.M. Guo, J.L. Chen, Y.C. Xue, A.H. Yuan, and Q.H. Kong, High N-doped hierarchical porous carbon networks with expanded interlayers for efficient sodium storage, Nano Res., 13(2020), No. 10, p. 2862.

    Article  CAS  Google Scholar 

  28. X.M. Guo, C. Qian, R.H. Shi, W. Zhang, F. Xu, S.L. Qian, J.H. Zhang, H.X. Yang, A.H. Yuan, and T.X. Fan, Biomorphic Co-N-C/CoOx composite derived from natural chloroplasts as efficient electrocatalyst for oxygen reduction reaction, Small, 15(2019), No. 8, art. No. 1804855.

  29. X.Z. Tong, D.C. Zhou, M.J. Qiu, Y.S. Zhou, Y.L. Ai, X.M. Guo, J.H. Zhang, Y.B. Cai, and Q.H. Kong, Biomorphic NiO/Ni with a regular pore-array structure as a supercapacitor electrode material, Eur. J. Inorg. Chem., 2021(2021), No. 6, p. 562.

    Article  CAS  Google Scholar 

  30. M. Huang, K. Mi, J.H. Zhang, H.L. Liu, T.T. Yu, A.H. Yuan, Q.H. Kong, and S.L. Xiong, MOF-derived bi-metal embedded N-doped carbon polyhedral nanocages with enhanced lithium storage, J. Mater. Chem. A, 5(2017), No. 1, p. 266.

    Article  CAS  Google Scholar 

  31. F. Zhou, Z. Li, X. Luo, T. Wu, B. Jiang, L.L. Lu, H.B. Yao, M. Antonietti, and S.H. Yu, Low cost metal carbide nanocrystals as binding and electrocatalytic sites for high performance Li-S batteries, Nano Lett., 18(2018), No. 2, p. 1035.

    Article  CAS  Google Scholar 

  32. X.F. Yang, X.J. Gao, Q. Sun, S.P. Jand, Y. Yu, Y. Zhao, X. Li, K. Adair, L.Y. Kuo, J. Rohrer, J.N. Liang, X.T. Lin, M.N. Banis, Y.F. Hu, H.Z. Zhang, X.F. Li, R.Y. Li, H.M. Zhang, P. Kaghazchi, T.K. Sham, and X.L. Sun, Promoting the transformation of Li2S2 to Li2S: Significantly increasing utilization of active materials for high-sulfur-loading Li-S batteries, Adv. Mater., 31(2019), No. 25, art. No. 1901220.

  33. S.B. Tu, X. Chen, X.X. Zhao, M.R. Cheng, P.X. Xiong, Y.W. He, Q. Zhang, and Y.H. Xu, A polysulfide-immobilizing polymer retards the shuttling of polysulfide intermediates in lithium-sulfur batteries, Adv. Mater., 30(2018), No. 45, art. No. 1804581.

  34. J.H. Zhang, M. Huang, B.J. Xi, K. Mi, A.H. Yuan, and S.L. Xiong, Systematic study of effect on enhancing specific capacity and electrochemical behaviors of lithium-sulfur batteries, Adv. Energy Mater., 8(2018), No. 2, art. No. 1701330.

  35. Z.X. Bian, Z.H. Tang, J.F. Xie, J.H. Zhang, X.M. Guo, Y.J. Liu, A.H. Yuan, F. Zhang, and Q.H. Kong, Preparation and lithium storage performances of g-C3N4/Si nanocomposites as anode materials for lithium-ion battery, Front. Energy, 14(2020), No. 4, p. 759.

    Article  Google Scholar 

  36. Y.C. Xue, T.T. Yu, J.L. Chen, X.H. Wan, X.W. Cai, X.M. Guo, F. Zhang, W.W. Xiong, Y.J. Liu, Q.H. Kong, A.H. Yuan, and J.H. Zhang, Fabrication of GeO2 microspheres/hierarchical porous N-doped carbon with superior cyclic stability for Li-ion batteries, J. Solid State Chem., 286(2020), art. No. 121303.

  37. J.A. Yu, L. Zhang, and H.J. Ji, Preparation of nanometer Cu6Sn5 and its application in lithium-ion batteries anode for mass production, Gen. Chem., 6(2020), No. 1, art. No. 180028.

  38. L.F. Wang, M.M. Geng, X.N. Ding, C. Fang, Y. Zhang, S.S. Shi, Y. Zheng, K. Yang, C. Zhan, and X.D. Wang, Research progress of the electrochemical impedance technique applied to the high-capacity lithium-ion battery, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 538.

    Article  Google Scholar 

  39. Q. Jiang, W.Q. Zhang, J.C. Zhao, P.H. Rao, and J.F. Mao, Superior sodium and lithium storage in strongly coupled amorphous Sb2S3 spheres and carbon nanotubes, Int. J. Miner. Metall. Mater., 28(2021), No. 7, p. 1194.

    Article  Google Scholar 

  40. J. Conder, C. Villevieille, S. Trabesinger, P. Novák, L. Gubler, and R. Bouchet, Electrochemical impedance spectroscopy of a Li-S battery: Part 1. Influence of the electrode and electrolyte compositions on the impedance of symmetric cells, Electrochim. Acta, 244(2017), p. 61.

    Article  CAS  Google Scholar 

  41. J.L. Chen, Z.X. Bian, M.R. Wu, M.Y. Gao, J. Shi, M.T. Duan, X.M. Guo, Y.J. Liu, J.H. Zhang, and Q.H. Kong, Preparation of CoSnO3/CNTs/S and its electrochemical performance as cathode material for lithium-sulfur batteries, ChemElectroChem, 7(2020), No. 20, p. 4209.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Natural Science Foundation of Jiangsu Province, China (No. BK2018 1469), the Guangdong Basic and Applied Basic Research Foundation (No. 2020A1515110035), and the Science and Technology Planning Social Development Project of Zhenjiang City, China (No. SSH20190140049).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xing-mei Guo or Jun-hao Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Mr., Gao, My., Zhang, Sy. et al. High-performance lithium-sulfur battery based on porous N-rich g-C3N4 nanotubes via a self-template method. Int J Miner Metall Mater 28, 1656–1665 (2021). https://doi.org/10.1007/s12613-021-2319-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-021-2319-x

Keywords

Navigation