Skip to main content
Log in

Effect of extrusion process on microstructure and mechanical and corrosion properties of biodegradable Mg−5Zn−1.5Y magnesium alloy

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

An Erratum to this article was published on 11 February 2022

This article has been updated

Abstract

The effect of extrusion temperature and ratio on the microstructure, hardness, compression, and corrosion behavior of Mg−5Zn−1.5Y alloy were analyzed in this study. The microstructural observations revealed that the cast alloy consists of α-Mg grains, and Mg3Zn6Y and Mg3Zn3Y2 intermetallic compounds, mostly located on the α-Mg grain boundaries. Extruded alloy at higher temperatures showed coarser grain microstructures, whereas those extruded at higher ratios contained finer ones, although more dynamic recrystalized grains with lower intermetallics were measured at both conditions. Combined conditions of the lower temperature (340°C) and higher ratio (1:11.5) provided higher compressive strengths. However, no significant hardness improvement was achieved. The extrusion process could decrease the corrosion rate of the cast alloy in simulated body fluid for over 80% due to primarily the refined microstructure. The extrusion temperature showed a more pronounced effect on corrosion resistance compared to the extrusion ratio, and the higher the extrusion temperature, the higher the corrosion resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. M.Q. Wang and T.T. Tang, Surface treatment strategies to combat implant-related infection from the beginning, J. Orthop. Transl., 17(2019), p. 42.

    Google Scholar 

  2. A. O’Mahony and P. Spencer, Osseointegrated implant failures, J. Ir. Dent. Assoc., 45(1999), No. 2, p. 44.

    Google Scholar 

  3. H.X. Li, S.K. Qin, Y.Z. Ma, J. Wang, Y.J. Liu, and J.S. Zhang, Effects of Zn content on the microstructure and the mechanical and corrosion properties of as-cast low-alloyed Mg−Zn−Ca alloys, Int. J. Miner. Metall. Mater., 25(2018), No. 7, p. 800.

    Article  CAS  Google Scholar 

  4. J.X. Chen, M. Gao, L.L. Tan, and K. Yang, Microstructure, mechanical and biodegradable properties of a Mg−2Zn−1Gd−0.5Zr alloy with different solution treatments, Rare Met., 38(2019), No. 6, p. 532.

    Article  CAS  Google Scholar 

  5. E.L. Zhang, L.P. Xu, G.N. Yu, F. Pan, and K. Yang, In vivo evaluation of biodegradable magnesium alloy bone implant in the first 6 months implantation, J. Biomed. Mater. Res. A, 90(2009), No. 3, p. 882.

    Article  Google Scholar 

  6. R. Bertolini, S. Bruschi, A. Ghiotti, L. Pezzato, and M. Dabalà, Large strain extrusion machining of magnesium alloys for biomedical applications, Procedia CIRP, 71(2018), p. 105.

    Article  Google Scholar 

  7. Y.K. Kim, K.B. Lee, S.Y. Kim, K. Bode, Y.S. Jang, T.Y. Kwon, M.H. Jeon, and M.H. Lee, Gas formation and biological effects of biodegradable magnesium in a preclinical and clinical observation, Sci. Technol. Adv. Mater., 19(2018), No. 1, p. 324.

    Article  Google Scholar 

  8. B. Chen, D.L. Lin, X.Q. Zeng, and C. Lu, Effects of yttrium and zinc addition on the microstructure and mechanical properties of Mg−Y−Zn alloys, J. Mater. Sci., 45(2010), No. 9, p. 2510.

    Article  CAS  Google Scholar 

  9. H. Zengin, Y. Turen, H. Ahlatci, and Y. Sun, Microstructure, mechanical properties and corrosion resistance of as-cast and as-extruded Mg−4Zn−1La magnesium alloy, Rare Met., 39(2020), No. 8, p. 909.

    Article  CAS  Google Scholar 

  10. M. Ali, M.A. Hussein, and N. Al-Aqeeli, Magnesium-based composites and alloys for medical applications: A review of mechanical and corrosion properties, J. Alloys Compd., 792(2019), p. 1162.

    Article  CAS  Google Scholar 

  11. H. Jafari, F. Rahimi, Z. Sheikhsofla, and M. Khalilnezhad, Effect of minor yttrium on microstructure and mechanical properties of bioimplant Mg−5Zn alloy, J. Mater. Eng. Perform., 26(2017), No. 11, p. 5590.

    Article  CAS  Google Scholar 

  12. X.G. Sun, M. Nouri, Y. Wang, and D.Y. Li, Corrosive wear resistance of Mg-Al-Zn alloys with alloyed yttrium, Wear, 302(2013), No. 1–2, p. 1624.

    Article  CAS  Google Scholar 

  13. B.Q. Shi, R.S. Chen, and W. Ke, Effects of yttrium and zinc on the texture, microstructure and tensile properties of hot-rolled magnesium plates, Mater. Sci. Eng. A, 560(2013), p. 62.

    Article  CAS  Google Scholar 

  14. D.K. Xu, W.N. Tang, L. Liu, Y.B. Xu, and E.H. Han, Effect of W-phase on the mechanical properties of as-cast Mg−Zn−Y−Zr alloys, J. Alloys Compd., 461(2008), No. 1–2, p. 248.

    Article  CAS  Google Scholar 

  15. K.B. Nie, Z.H. Zhu, K.K. Deng, and J.G. Han, Influence of extrusion parameters on microstructure, texture and mechanical properties of a low Mn and high-Ca containing Mg−2.9Zn−1.1Ca−0.5 Mn magnesium alloy, J. Mater. Res. Technol., 9(2020), No. 3, p. 5264.

    Article  CAS  Google Scholar 

  16. Y.Z. Ma, C.L. Yang, Y.J. Liu, F.S. Yuan, S.S. Liang, H.X. Li, and J.S. Zhang, Microstructure, mechanical, and corrosion properties of extruded low-alloyed Mg−xZn−0.2Ca alloys, J. Miner. Metall. Mater., 26(2019), No. 10, p. 1274.

    Article  CAS  Google Scholar 

  17. F.D. Mohammadi and H. Jafari, Microstructure characterization and effect of extrusion temperature on biodegradation behavior of Mg−5Zn−1Y−xCa alloy, Trans. Nonferrous Met. Soc. China, 28(2018), No. 11, p. 2199.

    Article  CAS  Google Scholar 

  18. C.J. Li, H.F. Sun, and W.B. Fang, Effect of extrusion temperatures on microstructures and mechanical properties of Mg−3Zn−0.2Ca−0.5Y alloy, Procedia Eng., 81(2014), p. 610.

    Article  CAS  Google Scholar 

  19. H.Y. Niu, F.F. Cao, K.K. Deng, K.B. Nie, J.W. Kang, and H.W. Wang, Microstructure and corrosion behavior of the as-extruded Mg−4Zn−2Gd−0.5Ca alloy, Acta Metall. Sin. Engl. Lett., 33(2020), No. 3, p. 362.

    Article  CAS  Google Scholar 

  20. X.F. Wu, C.X. Xu, J. Kuan, Z.W. Zhang, J.S. Zhang, and W.F. Yang, Effects of hot extrusion temperature on mechanical and corrosion properties of Mg−Y−Zn−Zr biological magnesium alloy containing W phase and I phase, Materials, 13(2020), No. 5, art. No. 1147.

  21. M. Shiri and H. Jafari, Effect of extrusion temperature and extrusion ratio on microstructure and biodegradation behavior of Mg−4.5Zn binary alloy, JOM, 71(2019), No. 12, p. 4705.

    Article  CAS  Google Scholar 

  22. X.B. Zhang, G.Y. Yuan, L. Mao, J.L. Niu, P.H. Fu, and W.J. Ding, Effects of extrusion and heat treatment on the mechanical properties and biocorrosion behaviors of a Mg−Nd−Zn−Zr alloy, J. Mech. Behav. Biomed. Mater., 7(2012), p. 77.

    Article  CAS  Google Scholar 

  23. L.B. Tong, M.Y. Zheng, L.R. Cheng, S. Kamado, and H.J. Zhang, Effect of extrusion ratio on microstructure, texture and mechanical properties of indirectly extruded Mg−Zn−Ca alloy, Mater. Sci. Eng. A, 569(2013), p. 48.

    Article  CAS  Google Scholar 

  24. X.B. Zhang, G.Y. Yuan, and Z.Z. Wang, Effects of extrusion ratio on microstructure, mechanical and corrosion properties of biodegradable Mg−Nd−Zn−Zr alloy, Mater. Sci. Technol., 29(2013), No. 1, p. 111.

    Article  Google Scholar 

  25. Y. Lee, S.I. Lee, and J. Yoon, Effect of the extrusion ratio on the mechanical properties of as-forged Mg−8Al−0.5Zn alloy, Int. J. Precis. Eng. Manuf. Green Technol., 2(2015), No. 3, p. 275.

    Article  Google Scholar 

  26. H. Jafari, F. Rahimi, and Z. Sheikhsofla, In vitro corrosion behavior of Mg−5Zn alloy containing low Y contents, Mater. Corros., 67(2016), No. 4, p. 396.

    Article  CAS  Google Scholar 

  27. N. Tahreen and D.L. Chen, A critical review of Mg−Zn−Y series alloys containing I, W, and LPSO phases, Adv. Eng. Mater., 18(2016), No. 12, p. 1983.

    Article  CAS  Google Scholar 

  28. S.Y. Wang, L. Gao, A.A. Luo, D.J. Li, and X.Q. Zeng, Hot deformation behavior and workability of pre-extruded ZK60A magnesium alloy, Trans. Nonferrous Met. Soc. China, 25(2015), No. 6, p. 1822.

    Article  CAS  Google Scholar 

  29. S.H. Kim, S.W. Lee, B.G. Moon, H.S. Kim, Y.M. Kim, and S.H. Park, Influence of extrusion temperature on dynamic deformation behaviors and mechanical properties of Mg−8Al−0.5Zn−0.2Mn−0.3Ca−0.2Y alloy, J. Mater. Res. Technol., 8(2019), No. 6, p. 5254.

    Article  CAS  Google Scholar 

  30. Y.X. Niu, Z.T. Song, Q.C. Le, J. Hou, and F.K. Ning, Excellent mechanical properties obtained by low temperature extrusion based on Mg−2Zn−1Al alloy, J. Alloys Compd., 801(2019), p. 415.

    Article  CAS  Google Scholar 

  31. X. Liu, Z.Q. Zhang, W.Y. Hu, Q.C. Le, L. Bao, and J.Z. Cui, Effects of extrusion speed on the microstructure and mechanical properties of Mg−9Gd−3Y−1.5Zn−0.8Zr alloy, J. Mater. Sci. Technol., 32(2016), No. 4, p. 313.

    Article  CAS  Google Scholar 

  32. J.F. Wang, Z.S. Wu, S. Gao, R.P. Lu, D.Z. Qin, W.X. Yang, and F.S. Pan, Optimization of mechanical and damping properties of Mg−0.6Zr alloy by different extrusion processing, J. Magnesium Alloys, 3(2015), No. 1, p. 79.

    Article  CAS  Google Scholar 

  33. J.C. Sun, Y.L. Ma, H.W. Miao, K.J. Li, C.H. Li, and H. Huang, Effect of Ca concentration on microstructure and mechanical properties of as-cast and as-extruded quasicrystal-strengthened Mg−7.2Zn−2.4Gd alloy, Adv. Mater. Sci. Eng., 2018(2018), art. No. 9138753.

  34. X. Zhao, S.C. Li, Y. Xue, and Z.M. Zhang, An investigation on microstructure, texture and mechanical properties of AZ80 Mg alloy processed by annular channel angular extrusion, Materials, 12(2019), No. 6, art. No. 1001.

  35. Z.J. Yu, C. Xu, J. Meng, K. Liu, J.L. Fu, and S. Kamado, Effects of extrusion ratio and temperature on the mechanical properties and microstructure of as-extruded Mg−Gd−Y−(Nd/Zn)−Zr alloys, Mater. Sci. Eng. A, 762(2019), art. No. 138080.

  36. H. Ma, Z.H. Huang, Y. Yao, H. Zhang, Z.M. Zhang, C.J. Xu, Y.H. Kang, S.C. Wang, M. Kuang, and J.C. Huang, Evolution of microstructures and mechanical properties of Mg−1.4Gd−1.2Y−0.4Zn−0.5Al sheets with different extrusion ratios, J. Alloys Compd., 817(2020), art. No. 152769.

  37. H.F. Sun, C.J. Li, and W.B. Fang, Evolution of microstructure and mechanical properties of Mg−3.0Zn−0.2Ca−0.5Y alloy by extrusion at various temperatures, J. Mater. Process. Technol., 229(2016), p. 633.

    Article  CAS  Google Scholar 

  38. Z.R. Zeng, N. Stanford, C.H.J. Davies, J.F. Nie, and N. Birbilis, Magnesium extrusion alloys: A review of developments and prospects, Int. Mater. Rev., 64(2019), No. 1, p. 27.

    Article  CAS  Google Scholar 

  39. Z. Zhang, J.H. Zhang, J. Wang, Z.H. Li, J.S. Xie, S.J. Liu, K. Guan, and R.Z. Wu, Toward the development of Mg alloys with simultaneously improved strength and ductility by refining grain size via the deformation process, Int. J. Miner. Metall. Mater., 28(2021), No. 1, p. 30.

    Article  CAS  Google Scholar 

  40. K. Sheng, L.W. Lu, Y. Xiang, M. Ma, and Z.C. Wang, Microstructure and mechanical properties of AZ31 Mg alloy fabricated by pre-compression and frustum shearing extrusion, Acta Metall. Sinica Engl. Lett., 32(2019), No. 2, p. 235.

    Article  CAS  Google Scholar 

  41. J.Y. Yang and W.J. Kim, Effect of I(Mg3YZn6)-, W(Mg3Y2Zn3)-and LPSO(Mg12ZnY)-phases on tensile work-hardening and fracture behaviors of rolled Mg−Y−Zn alloys, J. Mater. Res. Technol., 8(2019), No. 2, p. 2316.

    Article  CAS  Google Scholar 

  42. P. Hidalgo-Manrique, J.D. Robson, and M.T. Pérez-Prado, Precipitation strengthening and reversed yield stress asymmetry in Mg alloys containing rare-earth elements: A quantitative study, Acta Mater., 124(2017), p. 456.

    Article  CAS  Google Scholar 

  43. G. Lou, S.M. Xu, X.Y. Teng, Z.J. Ye, P. Jia, H. Wu, J.F. Leng, and M. Zuo, Effects of extrusion on mechanical and corrosion resistance properties of biomedical Mg−Zn−Nd−xCa alloys, Materials, 12(2019), No. 7, art. No. 1049.

  44. Y.Z. Du, Y.F. Ge, and B.L. Jiang, Dynamic precipitation behavior of a Mg−Zn−Ca−La alloy during deformation, JOM, 71(2019), No. 7, p. 2202.

    Article  CAS  Google Scholar 

  45. Y.J. Zhang, C.W. Yan, F.H. Wang, and W.F. Li, Electrochemical behavior of anodized Mg alloy AZ91D in chloride containing aqueous solution, Corros. Sci., 47(2005), No. 11, p. 2816.

    Article  CAS  Google Scholar 

  46. J.B. Jordon, V. Miller, V.V. Joshi, and N.R. Neelameggham, Magnesium Technology 2020, Springer, Cham, 2020.

    Book  Google Scholar 

  47. J.G. Li, Y. Yang, H.J. Deng, M.M. Li, J.F. Su, F.P. Hu, X.M. Xiong, and X.D. Peng, Microstructure and corrosion behavior of as-extruded Mg−6.5Li−xY−yZn alloys, J. Alloys Compd., 823(2020), art. No. 153839.

Download references

Acknowledgement

The authors are very thankful to Shahid Rajaee Teacher Training University for supporting the experiments of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Jafari.

Additional information

Conflict of Interest

The authors declare no potential conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jafari, H., Tehrani, A.H.M. & Heydari, M. Effect of extrusion process on microstructure and mechanical and corrosion properties of biodegradable Mg−5Zn−1.5Y magnesium alloy. Int J Miner Metall Mater 29, 490–502 (2022). https://doi.org/10.1007/s12613-021-2275-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-021-2275-5

Keywords

Navigation