Skip to main content
Log in

Behavior of phosphorus enrichment in dephosphorization slag at low temperature and low basicity

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

At low basicity and low temperature, the dephosphorization behavior and phosphorus distribution ratio (LP) between slag and molten steel in the double slag and remaining slag process were studied with a 180 t basic oxygen furnace industrial experiment. The dephosphorization slags with different basicities were quantitatively analyzed. At the lower basicity range of 0.9–2.59, both LP and dephosphorization ratio were increased as the basicity of dephosphorization slag increased. Dephosphorization slag consisted of dark gray P-rich, light gray liquid slag, and white Fe-rich phases. With increasing basicity, not only did the morphologies of different phases in the dephosphorization slag change greatly, but the area fractions and P2O5 content of the P-rich phase also increased. The transfer route of P during dephosphorization can be deduced as hot metal → liquid slag phase + Fe-rich phase → P-rich phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Y. Ogawa, M. Yano, S.-Y. Kitamura, and H. Hirata, Development of the continuous dephosphorization and decarburization process using BOF, Steel Res. Int., 74(2003), No. 2, p. 70.

    Article  CAS  Google Scholar 

  2. N. Sasaki, Y. Ogawa, S. Mukawa, and K.-I. Miyamoto, Improvement in hot-metal dephosphorization, Nippon Steel Tech. Rep., 104(2013), p. 26.

    Google Scholar 

  3. M. Kobayashi, K. Isobe, and M. Arai, Technical progress in steelmaking and casting for special bar and wire steel at muroran works, Nippon Steel Tech. Rep., 394(2012), p. 119.

    Google Scholar 

  4. X.H. Wang, G.S. Zhu, H.B. Li, and Y.C. Lü, Investigation on “slag-remaining + double-slag” BOF steelmaking technology, China Metall., 23(2013), No. 4, p. 40.

    Google Scholar 

  5. X. Yang, F.M. Sun, J.L. Yang, F. Liu, K.S. Cheng, and J. H. Wang, Optimization of low phosphorus steel production with double slag process in BOF, J. Iron Steel Res. Int., 20(2013), No. 8, p. 41.

    Article  Google Scholar 

  6. Z.H. Tian, B.H. Li, X.M. Zhang, and Z.H. Jiang, Double slag operation dephosphorization in BOF for producing low phosphorus steel, J. Iron Steel Res. Int., 16(2009), No. 3, p. 6.

    Article  CAS  Google Scholar 

  7. J.F. Lü, Z.N. Jin, H.Y. Yang, L.L. Tong, G.B. Chen, and F.X. Xiao, Effect of the CaO/SiO2 mass ratio and FeO content on the viscosity of CaO-SiO2-“FeO”-12wt%ZnO-3wt%Al2O3 slags, Int. J. Miner. Metall. Mater., 24(2017), No. 7, p. 756.

    Article  Google Scholar 

  8. S. Kitamura, H. Shibata K. Shimauchi, and S. Saito, The importance of dicalcium-silicate on hot metal dephosphorization reaction, Revue De Métallurgie, 105(2008), No. 5, p. 263.

    Article  CAS  Google Scholar 

  9. K. Ito, M. Yanagisawa, and N. Sano, Phosphorus distribution between solid 2CaO·SiO2 and molten CaO-SiO2-FeO-Fe2O3 slags, Tetsu-To-Hagané, 68(1982), No. 2, p. 342.

    Article  CAS  Google Scholar 

  10. S. Kitamura, H. Shibata, and N. Maruoka, Kinetic model of hot metal dephosphorization by liquid and solid coexisting slags, Steel Res. Int., 79(2008), No. 8, p. 586.

    Article  CAS  Google Scholar 

  11. L. Lin, Y.P. Bao, M. Wang, H.M. Zhou, and L.Q. Zhang, Influence of SiO2 modification on phosphorus enrichment in P bearing steelmaking slag, Ironmaking Steelmaking, 40(2013), No. 7, p. 521.

    Article  CAS  Google Scholar 

  12. J.Y. Li, M. Zhang, M. Guo, and X.M. Yang, Enrichment mechanism of phosphate in CaO-SiO2-FeO-Fe2O3-P2O5 steelmaking slags, Metall. Mater. Trans. B, 45(2014), No. 5, p. 1666.

    Article  CAS  Google Scholar 

  13. X. Gao, H. Matsuura, and F. Tsukihashi, Phase equilibrium for the CaO-SiO2-FeO-P2O5 system at 1673 K for dephosphorization with multi phase flux, J. Iron Steel Res. Int., 18(2011), Suppl. 2, p. 84.

    Google Scholar 

  14. X. Gao, H. Matsuura, I. Sohn, W.L. Wang, D.J. Min, and F. Tsukihashi, Phase relationship for the CaO-SiO2-FeO-5 mass% P2O5 system with oxygen partial pressure of 10-8 atm at 1673 and 1623 K, Mater. Trans., 54(2013), No. 4, p. 544.

    Article  CAS  Google Scholar 

  15. S. Kitamura, S. Saito, K. Utagawa, H. Shibata, and D.G.C. Robertson, Mass transfer of P2O5 between liquid slag and solid solution of 2CaO·SiO2 and 3CaO·P2O5, ISIJ Int., 49(2009), No. 12, p. 1838.

    Article  CAS  Google Scholar 

  16. S.L. Xie, W.L. Wang, Z.C. Luo, and D.Y. Huang, Mass transfer behavior of phosphorus from the liquid slag phase to solid 2CaO·SiO2 in the multiphase dephosphorization slag, Metall. Mater. Trans. B, 47(2016), No. 3, p. 1583.

    Article  CAS  Google Scholar 

  17. R. Inoue and H. Suito, Phosphorous partition between 2CaO·SiO2 particles and CaO-SiO2-FetO slags, ISIJ Int., 46(2006), No. 2, p. 174.

    Article  CAS  Google Scholar 

  18. K. Shimauchi, S. Kitamura, and H. Shibata, Distribution of P2O5 between solid dicalcium silicate and liquid phases in CaO-SiO2-Fe2O3 system, ISIJ Int., 49(2009), No. 4, p. 505.

    Article  CAS  Google Scholar 

  19. X. Yang, H. Matsuura, and F. Tsukihashi, Reaction behavior of P2O5 at the interface between solid 2CaO·SiO2 and liquid CaO-SiO2-FeOx-P2O5 slags saturated with solid 5CaO·SiO2·P2O5 at 1573 K, ISIJ Int., 50(2010), No. 5, p. 702.

    Article  CAS  Google Scholar 

  20. X. Yang, H. Matsuura, and F. Tsukihashi, Dissolution behavior of solid 5CaO·SiO2·P2O5 in CaO-SiO2-FeOx slag, Mater. Trans., 51(2010), No. 6, p. 1094.

    Article  CAS  Google Scholar 

  21. X. Yang, H. Matsuura, and F. Tsukihashi, Condensation of P2O5 at the interface between 2CaO·SiO2 and CaO-SiO2-FeOx-P2O5 slag, ISIJ Int., 49(2009), No. 9, p. 1298.

    Article  CAS  Google Scholar 

  22. C.M. Du, X. Gao, S. Ueda, and S. Kitamura, Distribution of P2O5 and Na2O between solid solution and liquid phase in the CaO-SiO2-Fe2O3-P2O5-Na2O slag system with high P2O5 content, Metall. Mater. Trans. B, 49(2018), No. 1, p. 181.

    Article  CAS  Google Scholar 

  23. L. Lin, Y.P. Bao, C. Gu, W. Wu, and J.Q. Zeng, Distribution of P2O5 between P-rich phase and matrix phase in P-bearing steel-making slag, High Temp. Mater. Proc., 37(2018), No. 7, p. 655.

    Article  CAS  Google Scholar 

  24. F. Pahlevani, S. Kitamura, H. Shibata, and N. Maruoka, Distribution of P2O5 between solid solution of 2CaO·SiO2-3CaO·P2O5 and liquid phase, ISIJ Int., 50(2010), No. 6, p. 822.

    Article  CAS  Google Scholar 

  25. K. Ito and M. Terasawa, Utilization of multiphase fluxes for the dephosphorization of hot metal, Steel Res. Int., 80(2009), No. 10, p. 733.

    CAS  Google Scholar 

  26. T. Hamano, S. Fukagai, and F. Tsukihashi, Reaction mechanism between solid CaO and FeOx-CaO-SiO2-P2O5 slag at 1573 K, ISIJ Int., 46(2006), No. 4, p. 490.

    Article  CAS  Google Scholar 

  27. X. Gao, H. Matsuura, I. Sohn, W.L Wang, D.J. Min, and F. Tsukihashi, Phase relationship of CaO-SiO2-FeO-5 mass pct P2O5 system with low oxygen partial pressure at 1673 K (1400°C), Metall. Mater. Trans. B, 43(2012), No. 4, p. 694.

    Article  CAS  Google Scholar 

  28. S.L. Xie and W.L. Wang, Crystallization kinetics study of the (2CaO·SiO2-3CaO·P2O5) solid solution in the multiphase dephosphorization flux, Steel Res. Int., 87(2016), No. 3, p. 376.

    Article  CAS  Google Scholar 

  29. G.W. Healy, New look at phosphorus distribution, J. Iron Steel Inst. (London), 208(1970), No. 7, p. 664.

    CAS  Google Scholar 

  30. H. Suito and R. Inoue, Phosphorus distribution between MgO-saturated CaO-FetO-SiO2-P2O5-MnO slags and liquid iron, Trans. Iron Steel Inst. Jpn., 24(1984), No. 1, p. 40.

    Article  CAS  Google Scholar 

  31. K. Ide and R.J. Fruehan, Evaluation of phosphorus reaction equilibrium in steelmaking, Iron Steelmaker, 27(2000), No. 12, p. 65.

    CAS  Google Scholar 

  32. X.F. Zhang, I.D. Sommerville, and J.M. Toguri, Equation for the equilibrium distribution of phosphorus between basic slags and steel, Trans. Iron Steel Soc. AIME, 6(1985), p. 29.

    CAS  Google Scholar 

  33. H.M. Zhou, Y.P. Bao, and L. Lin, Effect of P2O5 on rich phosphorus phase of CaO-SiO2-FetO-P2O5 slag, China Metall., 23(2013), No. 1, p. 45.

    CAS  Google Scholar 

  34. S.L. Xie, W.L. Wang, D.Y. Huang, H.C. Li, and Y. Du, Clarification of the dissolution of solid CaO and the phosphorus-enrichment capability of calcium silicates in the multiphase slag based on the ion and molecule coexistence theory, Steel Res. Int., 89(2018), No. 2, art. No. 1700317.

Download references

Acknowledgement

This work was financially supported by the National Natural Science Foundation of China (No. U1960202).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, Gf., Yang, J., Zhang, Rh. et al. Behavior of phosphorus enrichment in dephosphorization slag at low temperature and low basicity. Int J Miner Metall Mater 28, 66–75 (2021). https://doi.org/10.1007/s12613-020-2036-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-020-2036-x

Keywords

Navigation