Skip to main content
Log in

Influence of TiO2 on the melting property and viscosity of Cr-containing high-Ti melting slag

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

A study on the melting and viscosity properties of the chromium-containing high-titanium melting slag (CaO-SiO2-MgO-Al2O3-TiO2-Cr2O3) with TiO2 contents ranging from 38.63wt% to 42.63wt% was conducted. The melting properties were investigated with a melting-point apparatus, and viscosity was measured using the rotating cylinder method. The FactSage 7.1 software and X-ray diffraction, in combination with scanning electron microscopy-energy-dispersive spectroscopy (SEM-EDS), were used to characterize the phase equilibrium and microstructure of chromium-containing high-titanium melting slags. The results indicated that an increase in the TiO2 content led to a decrease in the viscosity of the chromium-containing high-titanium melting slag. In addition, the softening temperature, hemispheric temperature, and flowing temperature decreased with increasing TiO2 content. The amount of crystallized anosovite and sphene phases gradually increased with increasing TiO2 content, whereas the amount of perovskite phase decreased. SEM observations revealed that the distribution of the anosovite phase was dominantly influenced by TiO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Hu, X.W. Lv, and C.G. Bai, Enhanced reduction of coal-containing titanomagnetite concentrates briquette with multiple layers in rotary hearth furnace, Steel Res. Int., 87(2016), No. 4, p. 494.

    Article  CAS  Google Scholar 

  2. H.G. Du, Principle of Smelting of Vanadium-Bearing Titanomagnetite in Blast Furnace, Science Press, Beijing, 1996, p. 1.

    Google Scholar 

  3. S.T. Yang, M. Zhou, T. Jiang, S.F. Guan, W.J. Zhang, and X.X. Xue, Application of a water cooling treatment and its effect on coal-based reduction of high-chromium vanadium and titanium iron ore, Int. J. Miner. Metall. Mater., 23(2016), No. 12, p. 1353.

    Article  CAS  Google Scholar 

  4. X.W. Lv, Z.G. Lun, J.Q. Yin, and C.G. Bai, Carbothermic reduction of vanadium titanomagnetite by microwave irradiation and smelting behavior, ISIJ Int., 53(2013), No. 7, p. 1115.

    Article  CAS  Google Scholar 

  5. H.M. Long, T.J. Chun, P. Wang, Q.M. Meng, Z.X. Di, and J.X. Li, Grinding kinetics of vanadium-titanium magnetite concentrate in a damp mill and its properties, Metall. Mater. Trans. B, 47(2016), No. 3, p. 1765.

    Article  CAS  Google Scholar 

  6. C. Lv, K. Yang, S.M. Wen, S.J. Bai, and Q.C. Feng, A new technique for preparation of high-grade titanium slag from titanomagnetite concentrate by reduction-melting-magnetic separation processing, JOM, 69(2017), No. 10, p. 1801.

    Article  CAS  Google Scholar 

  7. T. Hu, X.W. Lv, C.G. Bai, Z.G. Lun, and G.B. Qiu, Reduction behavior of Panzhihua titanomagnetite concentrates with coal, Metal. Mater. Trans. B, 44(2013), No. 2, p. 252.

    Article  CAS  Google Scholar 

  8. Y.L. Sui, Y.F. Guo, T. Jiang, and G.Z. Qiu, Reduction kinetics of oxidized vanadium titano-magnetite pellets using carbon monoxide and hydrogen, J. Alloys Compd., 706(2017), p. 546.

    Article  CAS  Google Scholar 

  9. L. Kolbeinsen, Modelling of DRI processes with two simultaneously active reducing gases, Steel Res. Int., 81(2010), No. 10, p. 819.

    Article  CAS  Google Scholar 

  10. E.H. Wu, R. Zhu, S.L. Yang, L. Ma, J. Li, and J. Hou, Influences of technological parameters on smelting-separation process for metallized pellets of vanadium-bearing titanomagnetite concentrates, J. Iron Steel Res. Int., 23(2016), No. 7, p. 655.

    Article  Google Scholar 

  11. T. Jiang, S. Wang, Y.F. Guo, F. Chen, and F.Q. Zheng, Effects of basicity and MgO in slag on the behaviors of smelting vanadium titanomagnetite in the direct reduction-electric furnace process, Metals, 6(2016), No. 5, p. 107.

    Article  Google Scholar 

  12. L. Zhang, L.N. Zhang, M.Y. Wang, T.P. Lou, Z.T. Sui, and J.S. Jang, Effect of perovskite phase precipitation on viscosity of Ti-bearing blast furnace slag under the dynamic oxidation condition, J. Non-Cryst. Solids, 352(2006), No. 2, p. 123.

    Article  CAS  Google Scholar 

  13. J. Li, Z.T. Zhang, and X.D. Wang, Precipitation behavior of Ti enriched phase in Ti bearing slag, Ironmaking Steelmaking, 39(2012), No. 6, p. 414.

    Article  CAS  Google Scholar 

  14. J. Li, Z.T. Zhang, M. Zhang, M. Guo, and X.D. Wang, The influence of SiO2 on the extraction of Ti element from Tibearing blast furnace slag, Steel Res. Int., 82(2011), No. 6, p. 607.

    Article  CAS  Google Scholar 

  15. S. Wang, Y.F. Guo, T. Jiang, F. Chen, F.Q. Zheng, L.Z. Yang, and M.J. Tang, Behavior of titanium during the smelting of vanadium titanomagnetite metallized pellets in an electric furnace, JOM, 71(2019), No. 1, p. 323.

    Article  CAS  Google Scholar 

  16. Y.R. Liu, J.L. Zhang, Z.J. Liu, and X.D. Xing, Phase transformation behavior of titanium during carbothermic reduction of titanomagnetite ironsand, Int. J. Miner. Metall. Mater., 23(2016), No. 7, p. 760.

    Article  CAS  Google Scholar 

  17. G.B. Qiu, L. Chen, J.Y. Zhu, X.W. Lv, and C.G. Bai, Effect of Cr2O3 addition on viscosity and structure of Ti-bearing blast furnace slag, ISIJ Int., 55(2015), No. 7, p. 1367.

    Article  CAS  Google Scholar 

  18. E. Park and O. Ostrovski, Reduction of titania-ferrous ore by carbon monoxide, ISIJ Int., 43(2003), No. 9, p. 1316.

    Article  CAS  Google Scholar 

  19. E. Park and O. Ostrovski, Reduction of titania-ferrous ore by hydrogen, ISIJ Int., 44(2004), No. 6, p. 999.

    Article  CAS  Google Scholar 

  20. K. Huitu, M. Helle, H. Helle, M. Kekkonen, and H. Saxen, Optimization of midrex direct reduced iron use in ore-based steelmaking, Steel Res. Int., 86(2015), No. 5, p. 456.

    Article  CAS  Google Scholar 

  21. W. Li, G.Q. Fu, M.S. Chu, and M.Y. Zhu, Gas-based direct reduction of Hongge vanadium titanomagnetite-oxidized pellet and melting separation of the reduced pellet, Steel Res. Int., 88(2017), No. 1, art. No. 1600120.

    Google Scholar 

  22. W. Li, G.Q. Fu, M.S. Chu, and M.Y. Zhu, Oxidation induration process and kinetics of Hongge vanadium titanium-bearing magnetite pellets, Ironmaking Steelmaking, 44(2017), No. 4, p. 294.

    Article  CAS  Google Scholar 

  23. K.X. Jiao, J.L. Zhang, Z.Y. Wang, C.L. Chen, and Y.X. Liu, Effect of TiO2 and FeO on the viscosity and structure of blast furnace primary slags, Steel Res. Int., 88(2016), No. 5, art. No. 1600296.

    Google Scholar 

  24. Z.Y. Chang, K.X. Jiao, J.L. Zhang, X.J. Ning, and Z.Q. Liu, Effect of TiO2 and MnO on viscosity of blast furnace slag and thermodynamic analysis, ISIJ Int., 58(2018), No. 12, p. 2173.

    Article  CAS  Google Scholar 

  25. H. Park, J.Y. Park, G.H. Kim, and I. Sohn, Effect of TiO2 on the viscosity and slag structure in blast furnace type slags, Steel Res. Int., 83(2012), No. 2, p. 150.

    Article  CAS  Google Scholar 

  26. Y.H. Gao, L.T. Bian, and Z.Y. Liang, Influence of B2O3 and TiO2 on viscosity of titanium-bearing blast furnace slag, Steel Res. Int., 86(2015), No. 4, p. 386.

    Article  CAS  Google Scholar 

  27. R.Z. Xu, J.L. Zhang, R.Y. Ma, K.X. Jiao, and Y.A. Zhao, Influence of TiO2 on the viscosity of a high alumina slag and on carbon brick corrosion, Steel Res. Int., 89(2018), art. No. 1700353.

    Article  Google Scholar 

  28. J.L. Liao, J. Li, X.D. Wang, and Z.T. Zhang, Influence of TiO2 and basicity on viscosity of Ti bearing slag, Ironmaking Steelmaking, 39(2012), No. 2, p. 133.

    Article  CAS  Google Scholar 

  29. Il Sohn, W.L. Wang, H. Matsuura, F. Tsukihashi, and D.J. Min, Influence of TiO2 on the viscous behavior of calcium silicate melts containing 17 mass% Al2O3 and 10 mass% MgO, ISIJ Int., 52(2012), No. 1, p. 158.

    Article  CAS  Google Scholar 

  30. K. Hu, X.W. Lv S.P. Li, W. Lv, B. Song, and K.X. Han, Viscosity of TiO2-FeO-Ti2O3-SiO2-MgO-CaO-Al2O3 for high-titania slag smelting process, Metall. Mater. Trans. B, 49(2018), No. 4, p. 1963.

    Article  CAS  Google Scholar 

  31. M.R. Yang, X.W. Lv, R.R. Wei, and C.G. Bai, Wetting behavior of TiO2 by calcium ferrite slag at 1523 K, Metall. Mater. Trans. B, 49(2018), No. 5, p. 2667.

    Article  CAS  Google Scholar 

  32. J.B. Kim, J.K. Choi, I.W. Han, and I. Sohn, High-temperature wettability and structure of the TiO2-MnO-SiO2-Al2O3 welding flux system, J. Non-Cryst. Solids, 432(2016), Part B, p. 218.

    Article  CAS  Google Scholar 

  33. X.J. Dong, H.Y. Sun, X.F. She, Q.G. Xue, and J.S. Wang, Viscosity characteristics of TiO2-Al2O3-CaO-SiO2 fully liquid slags with high TiO2 content and low mass ratio of CaO to SiO2, J. Univ. Sci. Technol. Beijing, 35(2013), No. 10, p. 1297.

    CAS  Google Scholar 

  34. B.O. Mysen, F.J. Ryerson, and D. Virgo, The influence of TiO2 on the structure and derivative properties of silicate melts, Am. Mineral., 65(1980), No. 11–12, p. 1150.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51904066), the Fundamental Research Funds for the Central Universities, China (No. N182503032), the Postdoctoral Foundation of Northeastern University, China (No. 20190201) and the Postdoctoral International Exchange Program, China (Dispatch Project, 20190075).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, J., Fu, Gq., Li, W. et al. Influence of TiO2 on the melting property and viscosity of Cr-containing high-Ti melting slag. Int J Miner Metall Mater 27, 310–318 (2020). https://doi.org/10.1007/s12613-019-1914-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-019-1914-6

Keywords

Navigation