Skip to main content
Log in

Electrochemical performance of a nickel-rich LiNi0.6Co0.2Mn0.2O2 cathode material for lithium-ion batteries under different cut-off voltages

International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

A spherical-like Ni0.6Co0.2Mn0.2(OH)2 precursor was tuned homogeneously to synthesize LiNi0.6Co0.2Mn0.2O2 as a cathode material for lithium-ion batteries. The effects of calcination temperature on the crystal structure, morphology, and the electrochemical performance of the as-prepared LiNi0.6Co0.2Mn0.2O2 were investigated in detail. The as-prepared material was characterized by X-ray diffraction, scanning electron microscopy, laser particle size analysis, charge–discharge tests, and cyclic voltammetry measurements. The results show that the spherical-like LiNi0.6Co0.2Mn0.2O2 material obtained by calcination at 900°C displayed the most significant layered structure among samples calcined at various temperatures, with a particle size of approximately 10 μm. It delivered an initial discharge capacity of 189.2 mAh•g−1 at 0.2C with a capacity retention of 94.0% after 100 cycles between 2.7 and 4.3 V. The as-prepared cathode material also exhibited good rate performance, with a discharge capacity of 119.6 mAh•g−1 at 5C. Furthermore, within the cut-off voltage ranges from 2.7 to 4.3, 4.4, and 4.5 V, the initial discharge capacities of the calcined samples were 170.7, 180.9, and 192.8 mAh•g−1, respectively, at a rate of 1C. The corresponding retentions were 86.8%, 80.3%, and 74.4% after 200 cycles, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P. Gibot, M. Casas-Cabanas, L. Laffont, S. Levasseur, P. Carlach, S. Hamelet, J.M. Tarascon, and C. Masquelier, Room-temperature single-phase Li insertion/extraction in nanoscale LixFePO4, Nat. Mater., 7(2008), No. 9, p. 741.

    Article  Google Scholar 

  2. J.M. Tarascon and M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature, 414(2001), No. 6861, p. 359.

    Article  Google Scholar 

  3. Z.G. Yang, J.L. Zhang, M.C.W. Kintner-Meyer, X.C. Lu, D. Choi, J.P. Lemmon, and J. Liu, Electrochemical energy storage for green grid, Chem. Rev., 111(2011), No. 5, p. 3577.

    Article  Google Scholar 

  4. L.Y. Yu, W.H. Qiu, J.Y. Huang, and F. Lian, Synthesis and electrochemical characteristics of xLi2MnO3·(1−x)Li-(Ni1/3Co1/3Mn1/3)O2 compounds, Int. J. Miner. Metall. Mater, 16(2009), No. 4, p. 458.

    Article  Google Scholar 

  5. S.H. Yun, K.S. Park, and Y.J. Park, The electrochemical property of ZrFx-coated Li[Ni1/3Co1/3Mn1/3]O2 cathode material, J. Power Sources, 195(2010), No. 18, p. 6108.

    Article  Google Scholar 

  6. J. Choi and A. Manthiram, Crystal chemistry and electrochemical characterization of layered LiNi0.5−y Co0.5−y Mn2y O2 and LiCo0.5−y Mn0.5−y Ni2y O2 (0≤2y≤1) cathodes, J. Power Sources, 162(2006), No. 1, p. 667.

    Article  Google Scholar 

  7. M.H. Kim, H.S. Shin, D. Shin, and Y.K. Sun, Synthesis and electrochemical properties of Li[Ni0.8Co0.1Mn0.1]O2 and Li[Ni0.8Co0.2]O2 via co-precipitation, J. Power Sources, 159(2006), No. 2, p. 1328.

    Article  Google Scholar 

  8. T. Ohzuku and Y. Makimura, Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for lithium-ion batteries, Chem. Lett., 30(2001), No. 7, p. 642.

    Article  Google Scholar 

  9. W.B. Luo, X.H. Li, and J.R. Dahn, Synthesis, characterization, and thermal stability of Li[Ni1/3Mn1/3Co1/3−z(MnMg) z/2]O2, Chem. Mater., 22(2010), No. 17, p. 5065.

    Article  Google Scholar 

  10. R. Santhanam and B. Rambabu, High rate cycling performance of Li1.05Ni1/3Co1/3Mn1/3O2 materials prepared by sol–gel and co-precipitation methods for lithium-ion batteries, J. Power Sources, 195(2010), No. 13, p. 4313.

    Article  Google Scholar 

  11. Y. Chen, G.X. Wang, K. Konstantinov, H.K. Liu, and S.X. Dou, Synthesis and characterization of LiCoxMnyNi1−x−y O2 as a cathode material for secondary lithium batteries, J. Power Sources, 119-121(2003), p. 184.

    Article  Google Scholar 

  12. J.G. Li, L. Wang, Q. Zhang, and X.M. He, Synthesis and characterization of LiNi0.6Mn0.4−xCoxO2 as cathode materials for Li-ion batteries, J. Power Sources, 189(2009), No. 1, p. 28.

    Article  Google Scholar 

  13. P.Y. Liao, J.G. Duh, and S.R. Sheen, Microstructure and electrochemical performance of LiNi0.6Co0.4−x MnxO2 cathode materials, J. Power Sources, 143(2005), No. 1-2, p. 212.

    Article  Google Scholar 

  14. Y. Zhang, H. Cao, J. Zhang, and B.J. Xia, Synthesis of Li-Ni0.6Co0.2Mn0.2O2 cathode material by a carbonate co-precipitation method and its electrochemical characterization, Solid State Ionics, 177(2006), No. 37, p. 3303.

    Article  Google Scholar 

  15. S.K. Zhong, L. Wei, Z.G. Zuo, X. Tang, and Y.H. Li, Synthesis and electrochemical performances of LiNi0.6Co0.2Mn0.2O2 cathode materials, Trans. Nonferrous Met. Soc. China, 19(2009), No. 6, p. 1499.

    Article  Google Scholar 

  16. C.L. Gan, X.H. Hu, H. Zhan, and Y.H. Zhou, Synthesis and characterization of Li1.2Ni0.6Co0.2Mn0.2O2+δ as a cathode material for secondary lithium batteries, Solid State Ionics, 176(2005), No. 7-8, p. 687.

    Article  Google Scholar 

  17. J.J. Saavedra-Arias, N.K. Karan, D.K. Pradhan, A. Kumar, S. Nieto, R. Thomas, and R.S. Katiyar, Synthesis and electrochemical properties of Li(Ni0.8Co0.1Mn0.1)O2 cathode material: ex situ structural analysis by Raman scattering and X-ray diffraction at various stages of charge–discharge process, J. Power Sources, 183(2008), No. 2, p. 761.

    Article  Google Scholar 

  18. P. Yue, Z.X. Wang, H.J. Guo, F.X. Wu, Z.J. He, and X.H. Li, Effect of synthesis routes on the electrochemical performance of Li[Ni0.6Co0.2Mn0.2]O2 for lithium ion batteries, J. Solid State Electr., 16(2012), No. 12, p. 3849.

    Article  Google Scholar 

  19. P. Yue, Z.X. Wang, W.J. Peng, L.J. Li, W. Chen, H.J. Guo, and X.H. Li, Spray-drying synthesized LiNi0.6Co0.2Mn0.2O2 and its electrochemical performance as cathode materials for lithium ion batteries, Powder Technol., 214(2011), No. 3, p. 279.

    Article  Google Scholar 

  20. P. Yue, Z.X. Wang, W.J. Peng, L.J. Li, H.J. Guo, X.H. Li, Q.Y. Hu, and Y.H. Zhang, Preparation and electrochemical properties of submicron LiNi0.6Co0.2Mn0.2O2 as cathode material for lithium ion batteries, Scripta Mater., 65(2011), No. 12, p. 1077.

    Article  Google Scholar 

  21. G.T.K. Fey, J.G. Chen, Z.F. Wang, H.Z. Yang, and T.P. Kumar, Saturated linear dicarboxylic acids as chelating agents for the sol–gel synthesis of LiNi0.8Co0.2O2, Mater. Chem. Phys., 87(2004), No. 2-3, p. 246.

    Article  Google Scholar 

  22. G.T.K. Fey, V. Subramanian, and C.Z. Lu, Tartaric acid-assisted sol–gel synthesis of LiNi0.8Co0.2O2 and its electrochemical properties as a cathode material for lithium batteries, Solid State Ionics, 152(2002), p. 83.

    Article  Google Scholar 

  23. H.Q. Lu, H.T. Zhou, A.M. Svensson, A. Fossdal, E. Sheridan, S.G. Lu, and F. Vullum-Bruer, High capacity Li[Ni0.8Co0.1Mn0.1]O2 synthesized by sol–gel and co-precipitation methods as cathode materials for lithium-ion batteries, Solid State Ionics, 249(2013), p. 105.

    Google Scholar 

  24. H. Cao, Y. Zhang, J. Zhang, and B.J. Xia, Synthesis and electrochemical characteristics of layered LiNi0.6Co0.2Mn0.2O2 cathode material for lithium ion batteries, Solid State Ionics, 176(2005), No. 13-14, p. 1207.

    Article  Google Scholar 

  25. L.W. Liang, K. Du, Z.D. Peng, Y.B. Cao, J.G. Duan, J.B. Jiang, and G.R. Hu, Co-precipitation synthesis of Ni0.6Co0.2Mn0.2(OH)2 precursor and characterization of LiNi0.6Co0.2Mn0.2O2 cathode material for secondary lithium batteries, Electrochim. Acta, 130(2014), p. 82.

    Article  Google Scholar 

  26. D.P. Abraham, R.D. Twesten, M. Balasubramanian, I. Petrov, J. McBreen, and K. Amine, Surface changes on LiNi0.8Co0.2O2 particles during testing of high-power lithium-ion cells, Electrochem. Commun., 4(2002), No. 8, p. 620.

    Article  Google Scholar 

  27. Y. Cho, P. Oh, and J. Cho, A new type of protective surface layer for high-capacity Ni-based cathode materials: nanoscaled surface pillaring layer, Nano Lett., 13(2013), No. 3, p. 1145.

    Article  Google Scholar 

  28. M.M. Thackeray, C.S. Johnson, J.T. Vaughey, N. Li, and S.A. Hackney, Advances in manganese-oxide ‘composite’ electrodes for lithium-ion batteries, J. Mater. Chem., 15(2005), No. 23, p. 2257.

    Article  Google Scholar 

  29. D. Aurbach, Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries, J. Power Sources, 89(2000), No. 2, p. 206.

    Article  Google Scholar 

  30. M.H. Lee, Y.J. Kang, S.T. Myung, and Y.K. Sun, Synthetic optimization of Li[Ni1/3Co1/3Mn1/3]O2 via co-precipitation, Electrochim. Acta, 50(2004), No. 4, p. 939.

    Article  Google Scholar 

  31. J.R. Ying, C.R. Wan, C.Y. Jiang, and Y.X. Li, Preparation and characterization of high-density spherical LiNi0.8Co0.2O2 cathode material for lithium secondary batteries, J. Power Sources, 99(2001), No. 1-2, p. 78.

    Article  Google Scholar 

  32. J.Z. Kong, H.F. Zhai, C. Ren, G.A. Tai, X.Y. Yang, F. Zhou, H. Li, J.X. Li, and Z. Tang, High-capacity Li(Ni0.5Co0.2Mn0.3)O2 lithium-ion battery cathode synthesized using a green chelating agent, J. Solid State Electrochem., 18(2013), No. 1, p. 181.

    Article  Google Scholar 

  33. D. Mohanty and H. Gabrisch, Microstructural investigation of LixNi1/3Mn1/3Co1/3O2 (x≤1) and its aged products via magnetic and diffraction study, J. Power Sources, 220(2012), p. 405.

    Article  Google Scholar 

  34. W.H. Ryu, S.J. Lim, W.K. Kim, and H.S. Kwon, 3-D dumbbell-like LiNi1/3Mn1/3Co1/3O2 cathode materials assembled with nano-building blocks for lithium-ion batteries, J. Power Sources, 257(2014), p. 186.

    Article  Google Scholar 

  35. D. Li, F. Lian, X.M. Hou, and K.C. Chou, Reaction mechanisms for 0.5Li2MnO3·0.5LiMn0.5Ni0.5O2 precursor prepared by low-heating solid state reaction, Int. J. Miner. Metall. Mater., 19(2012), No. 9, p. 856.

    Article  Google Scholar 

  36. K.M. Shaju, G.V.S. Rao, and B.V.R. Chowdari, Performance of layered Li(Ni1/3Co1/3Mn1/3)O2 as cathode for Li-ion batteries, Electrochim. Acta, 48(2002), No. 2, p. 145.

    Article  Google Scholar 

  37. L.W. Liang, K. Du, Z.D. Peng, Y.B. Cao, and G.R. Hu, Synthesis and electrochemical performance of Li-Ni0.6Co0.2Mn0.2O2 as a concentration-gradient cathode material for lithium batteries, Chin. Chem. Lett., 25(2014), No. 6, p. 883.

    Article  Google Scholar 

  38. J.N. Reimers, E. Rossen, C.D. Jones, and J.R. Dahn, Structure and electrochemistry of LixFeyNi1−y O2, Solid State Ionics, 61(1993), No. 4, p. 335.

    Article  Google Scholar 

  39. J. Eom, M.G. Kim, and J. Cho, Storage characteristics of Li-Ni0.8Co0.1+x Mn0.1−x O2 (x = 0, 0.03, and 0.06) cathode materials for lithium batteries, J. Electrochem. Soc., 155(2008), No. 3, p. 239.

    Article  Google Scholar 

  40. S.K. Jung, H. Gwon, J. Hong, K.Y. Park, D.H. Seo, H. Kim, J. Hyun, W. Yang, and K. Kang, Understanding the degradation mechanisms of LiNi0.5Co0.2Mn0.3O2 cathode material in lithium ion batteries, Adv. Energy Mater., 4(2014), No. 1.

    Google Scholar 

  41. F. Lin, I.M. Markus, D. Nordlund, T.C. Weng, M.D. Asta, H.L. Xin and M.M. Doeff, Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries, Nat. Commun., 5(2014).

    Google Scholar 

  42. F. Lin, D. Nordlund, Y.Y. Li, M.K. Quan, L. Cheng, T.C. Weng, Y.J. Liu, H.L. Xin, and M.M. Doeff, Metal segregation in hierarchically structured cathode materials for high-energy lithium batteries, Nat. Energy, 1(2016), art. No. 15004.

    Google Scholar 

  43. Y.S. Lee, D. Ahn, Y.H. Cho, T.E. Hong, and J. Cho, Improved rate capability and thermal stability of Li-Ni0.5Co0.2Mn0.3O2 cathode materials via nanoscale SiP2O7 coating, J. Electrochem. Soc., 158(2011), No. 12, p. 1354.

    Article  Google Scholar 

  44. P. Yue, Z.X. Wang, X.H. Li, X. Xiong, J.X. Wang, X.W. Wu, and H.J. Guo, The enhanced electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode materials by low temperature fluorine substitution, Electrochim. Acta, 95(2013), p. 112.

    Article  Google Scholar 

Download references

Acknowledgements

This project was financially supported by NSAF (No. U1530155), Ministry of Science and Technology (MOST) of China, US–China Collaboration on Cutting-edge Technology Development of Electric Vehicle, the Nation Key Basic Research Program of China (No. 2015CB251100), and Beijing Key Laboratory of Environmental Science and Engineering (No. 20131039031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dao-bin Mu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, Kl., Mu, Db., Wu, Br. et al. Electrochemical performance of a nickel-rich LiNi0.6Co0.2Mn0.2O2 cathode material for lithium-ion batteries under different cut-off voltages. Int J Miner Metall Mater 24, 342–351 (2017). https://doi.org/10.1007/s12613-017-1413-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-017-1413-6

Keywords

Navigation