Skip to main content
Log in

Evolution of the texture and mechanical properties of 2060 alloy during bending

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

In this study, we examined the evolution of the texture and mechanical properties of 2060 (T8) alloy during bending. A pixel rotation method (PRM) was proposed and used to characterize the textural evolution during bending determined by electron backscatter diffraction. The results showed that the textural components changed insignificantly, with the exception of a decrease in the cube texture. The tensile and yielding properties of the alloy were evaluated at three different orientations with respect to the rolling direction. The mechanical strength was found to increase in three directions with decreasing bending radius; thus, it was concluded that the 2060 (T8) alloy sheet satisfies the usage requirement after bending deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.J. Rioja and J. Liu, The Evolution of Al–Li base products for aerospace and space applications, Metall. Mater. Trans. A, 43(2012), No. 9, p. 3325.

    Article  Google Scholar 

  2. Z.Q. Zheng, J.F. Li, Z.G. Chen, H.Y. Li, S.C. Li, and C.Y. Tan, Alloying and microstructural evolution of Al-Li alloys, Chin. J. Nonferrous Met., 21(2011), No. 10, p. 2337.

    Google Scholar 

  3. L.M. Karabin, G.H. Bray, R.J. Rioja, and G. Venema, Al–Li–Cu–Mg–(Ag) products for lower wing skin applications, [in] ICAA13: 13th International Conference on Aluminum Alloys, Pennsylvania, 2012, p. 529.

    Chapter  Google Scholar 

  4. R.J. Rioja, Fabrication methods to manufacture isotropic Al–Li products for space and aerospace applications, Mater. Sci. Eng. A, 257(1998), No. 1, p. 100.

    Article  Google Scholar 

  5. Z.W. Chen, J. Zhao, and S.S. Li, Texture evolution of Al–Mg–Li aeronautical alloys in in-situ tension, Int. J. Miner. Metall. Mater., 19(2012), No. 12, p. 1100.

    Article  Google Scholar 

  6. A.K. Vasudévan, M.A. Przystupa, and W.G. Fricke, Effect of composition on crystallographic texture in hot-rolled Al-Li-Cu alloys, Mater. Sci. Eng. A, 208(1996), No. 2, p. 172.

    Article  Google Scholar 

  7. Y.B. Zhu, Investigation on Texture and Anisotropy of 2198 Aluminum–Lithium Alloy [Dissertation], Shenyang Aerospace University, Shenyang, 2012, p. 72.

    Google Scholar 

  8. R.K. Singh, A.K. Singh, and N.E. Prasad, Texture and mechanical property anisotropy in an Al–Mg–Si–Cu alloy, Mater. Sci. Eng. A, 277(2000), No. 1-2, p. 114.

    Article  Google Scholar 

  9. Q. Contrepois, C. Maurice, and J.H. Driver, Hot rolling textures of Al–Cu–Li and Al–Zn–Mg–Cu aeronautical alloys: experiments and simulations to high strains, Mater. Sci. Eng. A, 527(2010), No. 27-28, p. 7305.

    Article  Google Scholar 

  10. J. Zhong, M. Jia, C.P. Fan, Z.J. Zheng, H.P. Li, and Q.P. Wu, Fatigue crack propagation behavior of 2050 aluminum alloy, Rare Met. Mater. Eng., 43(2014), No. 8, p. 1944.

    Google Scholar 

  11. J.N. Liu, W. Liu, G.Y. Tang, and R.F. Zhu, Influence of intermediate annealing on the microstructure and texture of Ni-9.3at%W substrates, Int. J. Miner. Metall. Mater., 21(2014), No. 2, p. 162.

    Article  Google Scholar 

  12. Y.H. Zhang, Z.Y. Yao, G.J. Huang, and Q. Liu, EBSD investigation on microstructure and texture in rolling aluminum alloys, J. Chin. Electron Microsc. Soc., 28(2009), No. 1, p. 43.

    Google Scholar 

  13. N. Zhang, P. Yang, and W.M. Mao, Influence of columnar grains on the cold rolling texture evolution in Fe-3%Si electrical steel, Acta Metall. Sin., 48(2012), No. 7, p. 782.

    Article  Google Scholar 

  14. M. Cabibbo, E. Evangelista, and C. Scalabroni, EBSD FEG-SEM, TEM and XRD techniques applied to grain study of a commercially pure 1200 aluminum subjected to equalchannel angular-pressing, Micron, 36(2005), No. 5, p. 401.

    Article  Google Scholar 

  15. A. Davidkov, R.H. Petrov, P. De Smet, B. Schepers, and L.A.I. Kestens, Microstructure controlled bending response in AA6016 Al alloys, Mater. Sci. Eng. A, 528(2011), No. 22-23, p. 7068.

    Article  Google Scholar 

  16. Y. Takayama, J.A. Szpunar, and H. Jeong, Cube texture development in an Al–Mg–Mn alloy sheet worked by continuous cyclic bending, Mater. Trans., 42(2001), No. 10, p. 2050.

    Article  Google Scholar 

  17. H. Xiao, G.S. Song, C. Yan, S.H. Zhang, L.Q. Ruan, and X.G. Zhang, Microstructure evolution of AZ31 magnesium alloy profile during warm bending process, Chin. J. Nonferrous Met., 21(2011), No. 8, p. 1814.

    Google Scholar 

  18. J.H. Cho, H.W. Kim, S.B. Kang, and T.S. Han, Bending behavior, and evolution of texture and microstructure during differential speed warm rolling of AZ31B magnesium alloys, Acta Mater., 59(2011), No. 14, p. 5638.

    Article  Google Scholar 

  19. N.M. Shkatulyak, A.A. Bryukhanov, M. Rodman, V.V. Usov, M. Schaper, G. Haferkamp, and V.A. Nastasyuk, Reverse bending effect on the texture, structure, and mechanical properties of sheet copper, Phys. Met. Metallogr., 113(2012), No. 8, p. 810.

    Article  Google Scholar 

  20. K.V. Jata, S. Panchanadeeswaran, and A.K. Vasudevan, Evolution of texture, microstructure and mechanical property anisotropy in an Al–Li–Cu alloy, Mater. Sci. Eng. A, 257(1998), No. 1, p. 37.

    Article  Google Scholar 

  21. C. Iacono, J. Sinke, and R. Benedictus, Prediction of minimum bending ratio of aluminum sheets from tensile material properties, J. Manuf. Sci. Eng., 132(2010), p. 021001.

    Article  Google Scholar 

  22. J.S. Pan, M.B. Tian, and J.M. Tong, Fundamentals of Materials Science, Tsinghua University Press, Beijing, 1998, p. 153.

    Google Scholar 

  23. A. Rollett, F.J. Humphreys, G.S. Rohrer, and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed., Elsevier, Oxford, 2004, p. 398.

    Google Scholar 

  24. I. L. Dillamore, H. Katoh, and K. Haslam, The nucleation of recrystallisation and the development of textures in heavily compressed iron–carbon alloys, Texture, 1(1974), No. 3, p. 151.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, X., Fu, Bq., Zhang, Cl. et al. Evolution of the texture and mechanical properties of 2060 alloy during bending. Int J Miner Metall Mater 22, 966–971 (2015). https://doi.org/10.1007/s12613-015-1156-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-015-1156-1

Keywords

Navigation