Skip to main content
Log in

Dielectric, piezoelectric, and ferroelectric properties of lanthanum-modified PZTFN ceramics

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

Specimens of Pb1−1.5x La x (Zr0.53Ti0.47)1−yz Fe y Nb z O3 (x = 0, 0.004, 0.008, 0.012, and 0.016, y = z = 0.01) (PZTFN) ceramics were synthesized by a semi-wet route. In the present study, the effect of La doping was investigated on the structural, microstructural, dielectric, piezoelectric, and ferroelectric properties of the ceramics. The results show that, the tetragonal (space group P4mm) and rhombohedral (space group R3c) phases are observed to coexist in the sample at x = 0.012. Microstructural investigations of all the samples reveal that La doping inhibits grain growth. Doping of La into PZTFN improves the dielectric, ferroelectric, and piezoelectric properties of the ceramics. The hysteresis loops of all specimens exhibit nonlinear behavior. The dielectric, piezoelectric and ferroelectric properties show a maximum response at x ≥ 0.012, which corresponds to the morphotropic phase boundary (MPB).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Setter, Electroceramics: looking ahead, J. Eur. Ceram. Soc., 21(2001), p. 1279.

    Article  Google Scholar 

  2. R.C. Buchanan, Ceramic Materials for Electronics: Processing Properties, and Applications, Marcel Dekker Inc., New York, 1986, p. 139.

    Google Scholar 

  3. Ragini, R. Ranjan, S.K. Mishra, and D. Pandey, Room temperature structure of Pb(ZrxTi1x )O3 around the morphotropic phase boundary region: a Rietveld study, J. Appl. Phys., 92(2002), No. 6, p. 3266.

    Article  Google Scholar 

  4. B.V. Hiremath, A.I. Kingon, and J.V. Biggers, Reaction sequence in the formation of lead zirconate-lead titanate solid solutions: role of raw materials, J. Am. Ceram. Soc., 66(1983), No. 11, p. 790.

    Article  Google Scholar 

  5. A. Dalakoti, A. Bandyopadhyay, and S. Bose, Effect of Zn, Sr, and Y addition on electrical properties of PZT thin films, J. Am. Ceram. Soc., 89(2006), No. 3, p. 1140.

    Article  Google Scholar 

  6. B.W. Lee and E.J. Lee, Effects of complex doping on microstructural and electrical properties of PZT ceramics, J. Electroceram., 17(2006), p. 597.

    Article  Google Scholar 

  7. M. Prabu, I.B.S. Banu, S. Gobalakrishnan, and M. Chavali, Electrical and ferroelectric properties of undoped and La-doped PZT (52/48) electroceramics synthesized by sol-gel method, J. Alloys Compd., 551(2013), p. 200.

    Article  Google Scholar 

  8. K. Ramam and M. Lopez, Ferroelectric and piezoelectric properties of Ba modified lead zirconium titanate ceramics, J. Phys. D, 39(2006), p. 4466.

    Article  Google Scholar 

  9. D. Bochenek, Properties of the ferroelectric PBZT ceramics admixed with niobium, Ferroelectrics, 417(2011), p. 41.

    Article  Google Scholar 

  10. A. Singh and R. Chatterjee, Multiferroic properties of La-Rich BiFeO3-PbTiO3 solid solutions, Ferroelectrics, 433(2012), p. 180.

    Article  Google Scholar 

  11. Brajesh K, A.K. Himanshu, H. Sharma, K. Kumari, R. Ranjan, S.K. Bandhopadhyay, and T.P. Sinha, Structural, dielectric relaxation and piezoelectric characterization of Sr2+ substituted modified PMS-PZT ceramic, Phys B, 407(2012), p. 635.

    Article  Google Scholar 

  12. A. Kumar and S.K. Mishra, Effects of Sr2+ substitution on the structural, dielectric, and piezoelectric properties of PZT-PMN ceramics, Int. J. Miner. Metall. Mater., 21(2014), p. 175.

    Article  Google Scholar 

  13. J. Ryu, J.J. Choi, and H.E. Kim, Effect of heating rate on the sintering behavior and the piezoelectric properties of lead zirconate titanate ceramics, J. Am. Ceram. Soc., 84(2001), No. 4, p. 902.

    Article  Google Scholar 

  14. S. Dutta and R.N.P. Choudhary, Synthesis and characterization of Fe3+ modified PLZT ferroelectrics, J. Mater. Sci. Mater. Electron., 14(2003), p. 463.

    Article  Google Scholar 

  15. S.Y. Chu, T.Y. Chen, I.T. Tsai, and W. Water, Doping effects of Nb additives on the piezoelectric and dielectric properties of PZT ceramics and its application on SAW devices, Sens. Actuators A, 113(2004), p. 198.

    Article  Google Scholar 

  16. V.Y. Toplov, Heterophase structures and their quantitative characteristics in (1−x)Pb(Fe1/2Nb1/2)O3xPbTiO3 near the morphotropic phase boundary, Mater. Lett., 66(2012), p. 57.

    Article  Google Scholar 

  17. F. Kahoul, L. Hamzioui, N. Abdessalem, and A. Boutarfaia, Synthesis and piezoelectric properties of Pb0.98Sm0.02[(Zry, Ti1−y )0.98(Fe 2/3+1 , Nb 2/5+1 )0.02]O3 ceramics, Mater. Sci. Appl., 3(2012), p. 50.

    Google Scholar 

  18. A. Prasatkhetragarn, Synthesis and dielectric properties of 0.9Pb(Zr1/2Ti1/2)O3-0.1Pb(Fe1/3Nb2/3)O3 ceramics, Ferroelectrics, 416(2011), p. 35.

    Article  Google Scholar 

  19. R. Rai, S. Sharma, and R.N.P. Choudhary, Dielectric and piezoelectric studies of Fe doped PLZT ceramics, Mater. Lett., 59(2005), p. 3921.

    Article  Google Scholar 

  20. A.K. Shukla, V.K. Agrawal, I.M. Das, J. Singh, and S.L. Srivastava, Dielectric response of PLZT ceramics x/57/43 across ferroelectric-paraelectric phase transition, Bull. Mater. Sci., 34(2011), p. 133.

    Article  Google Scholar 

  21. F. Kahoul, L. Hamzioui, Z. Necira, and A. Boutarfaia, Effect of sintering temperature on the electromechanical properties of (1−x)Pb(ZryTi1−y )O3xSm(Fe 3+0.5 , Nb 5+0.5 )O3 ceramics, Energy Procedia, 36(2013), p. 1050.

    Article  Google Scholar 

  22. A.P. Singh, S.K. Mishra, D. Pandey, C.D. Prasad, and R. Lal, Low temperature synthesis of chemically homogeneous lead zirconate titanate (PZT) powder by a semi-wet method, J. Mater. Sci., 28(1993), No. 18, p. 5050.

    Article  Google Scholar 

  23. M.R. Soares, A.M.R. Senos, and P.Q. Mantas, Phase coexistence region and dielectric properties of PZT ceramics, J. Eur. Ceram. Soc., 20(2000), p. 321.

    Article  Google Scholar 

  24. J. Rodriguez-Carvajal, Recent advances in magnetic structure determination by neutron powder diffraction, Phys. B, 192(1993), p. 55.

    Article  Google Scholar 

  25. S.P. Singh, A.K. Singh, and D. Pandey, Evidence for a monoclinic M A to tetragonal morphotropic phase transition in (1−x)[Pb(Fe1/2Nb1/2)O3]−xPbTiO3 ceramics, J. Phys. Condens. Matter, 19(2007), art. No. 036217.

  26. D.M. Santos, A.Z. Simoes, M.A. Zaghete, C.O.P. Santos, J.A. Varela, and E. Longo, Synthesis and electrical characterization of tungsten doped Pb(Zr0.53Ti0.47)O3 ceramics obtained from a hybrid process, Mater. Chem. Phys., 103(2007), p. 371.

    Article  Google Scholar 

  27. S.B. Krupanidhi, Relaxor type perovskites: primary candidates of nano-polar regions, J. Chem. Sci., 115(2003), p. 775.

    Article  Google Scholar 

  28. B. Noheda, D.E. Cox, G. Shirane, J. Gao, and Z.G. Ye, Phase diagram of the ferroelectric relaxor (1−x)PbMg1/3Nb2/3O3x-PbTiO3, Phys. Rev. B, 66(2002), art. No. 054104.

  29. L. Kozielski and F. Clemens, Multiferroics application: magnetic controlled piezoelectric transformer, Process. Appl. Ceram., 6(2012), p. 15.

    Article  Google Scholar 

  30. B. Sahoo and P.K. Panda, Effect of lanthanum, neodymium on piezoelectric, dielectric and ferroelectric properties of PZT, J. Adv. Ceram., 2(2013), p. 37.

    Article  Google Scholar 

  31. A.K. Zak, A. Jalalian, S.M. Hossseini, A. Kompany, and T.S. Narm, Effect of Y3+ and Nb5+ co-doping on dielectric and piezoelectric properties of PZT ceramics, Mater. Sci., 28(2010), p. 703.

    Google Scholar 

  32. V. Singh, H.H. Kumar, D.K. Kharat, S. Haits, and M.P. Kulkarni, Effect of lanthanum substitution on ferroelectric properties of niobium doped PZT ceramics, Mater. Lett., 60(2006), p. 2964.

    Article  Google Scholar 

  33. C.A. Randall, N. Kim, J.P. Kucera, W.W. Cao, and T.R. Shrout, Intrinsic and extrinsic size effects in fine grained morphotropic phase boundary lead zirconate titanate ceramics, J. Am. Ceram. Soc., 81(1998), p. 677.

    Article  Google Scholar 

  34. Z.H. Yao, H.X. Liu, Y.Q. Li, M.H. Cao, and H. Hao, Morphotropic phase boundary of (Bi0.9La0.1)ScO3-PbTiO3 piezoelectric ceramics for high-temperature application, Ferroelectrics, 409(2010), p. 21.

    Article  Google Scholar 

  35. B. Noheda, D.E. Cox, G. Shirane, R. Guo, B. Jones, and L.E. Cross, Stability of the monoclinic phase in the ferroelectric perovskite PbZr1−x TixO3, Phys. Rev. B, 63(2001), art. No. 014103.

  36. T. Takenaka, K. Maruyama, and K. Sakata, (Bi1/2Na1/2)TiO3-BaTiO3 system for lead-free piezoelectric ceramics, Jpn. J. Appl. Phys., 30(1991), p. 2236.

    Article  Google Scholar 

  37. B.M. Jin, D.S. Lee, I.W. Kim, J.H. Kwon, K.S. Lee, J.S. Song, and S.J. Jeong, The additives for improving piezoelectric and ferroelectric properties of 0.2Pb(Mg1/3Nb2/3)O3-0.8(PbZrO3-PbTiO3) ceramics, Ceram. Int., 30(2004), p. 1449.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Mishra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Mishra, S.K. Dielectric, piezoelectric, and ferroelectric properties of lanthanum-modified PZTFN ceramics. Int J Miner Metall Mater 21, 1019–1027 (2014). https://doi.org/10.1007/s12613-014-1003-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-014-1003-9

Keywords

Navigation