Skip to main content
Log in

Optical properties of cobalt xanthate films on different substrates

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

Cobalt isopropyl xanthate thin films (CXTFs) were deposited via chemical bath deposition onto different substrates: commercial glass (CG), indium tin oxide (ITO), and poly(methyl methacrylate) (PMM). Isopropyl xanthate was synthesized according to a method described in the literature. The cobalt nitrate and isopropyl xanthate were mixed in a beaker, which allowed the thin films to be deposited via a simple ion-ion mechanism. The transmission, reflectivity, refractive index, dielectric constant, and optical conductivity were investigated for various thin films coated onto different substrates. An ultraviolet-visible spectrophotometer was used to measure the optical properties of the thin films. The lowest value of the transmission and the highest value of the refractive index were observed for the thin films deposited onto PMM. The structure of the cobalt xanthate was characterized by Fourier transform infrared (FTIR) spectroscopy, which was measured using a Perkin-Elmer Spectrum 400 spectrometer. The stretching vibration of the Co-S bonds was observed at 359 cm-1 in the FTIR spectrum of the CXTFs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H.J. Gao, Z.X. Bian, H.Y. Chen, Z.Q. Xue, and S.J. Pang, A new type of organometallic system for high density data storage by scanning tunneling microscopy, Chem. Phys. Lett., 272(1997), No. 5–6, p. 459.

    Article  Google Scholar 

  2. J.C.F. Rodriguez-Reyes and A.V. Teplyakov, Chemistry of organometallic compounds on silicon: the first step in film growth, Chem. Eur. J., 13(2007), No. 33, p. 9164.

    Article  Google Scholar 

  3. M. Grassi, D.A.W. Soares, A.A.A. de Queiroz, A.H.A. Bressiani, and J.C. Bressiani, Organometallic chemical vapor deposition of compound semiconductors, Mater. Sci. Eng. B, 112(2004), No. 2–3, p. 179.

    Article  Google Scholar 

  4. R.A. Fischer, J. Weiβ, and W. Rogge, Organometallic chemical vapour deposition of cobalt/indium thin films using the single-molecule precursors [(CO)4Co]aInR3−a (R = CH2CH2CH2NMe2; a = 1–3), Polyhedron, 17(1998), No. 7, p. 1203.

    Article  Google Scholar 

  5. Y.M. Jeong, J.K. Lee, S.C. Ha, and S.H. Kim, Fabrication of cobalt-organic composite thin film via plasma-enhanced chemical vapor deposition for antibacterial applications, Thin Solid Films, 517(2009), No. 9, p. 2855.

    Article  Google Scholar 

  6. P.L. Musetha, The Use of Metal Complexes to Deposite Metals Calconide Thin Films and Nanoparticles [Dissertation], University of Zululand, South Africa, 2006.

    Google Scholar 

  7. N. Zohir, B. Mustapha and D.A. Elbaki, Synthesis and structural characterization of xanthate (KEX) in sight of their utilization in the processes of sulphides flotation, J. Miner. Mater. Charact. Eng., 8(2009), No. 6, p. 469.

    Google Scholar 

  8. J. Leja, Surface Chemistry of Froth Flotation, Plenum Press, New York, 1982.

    Google Scholar 

  9. J.R.A. Anderson, The preparation and properties of tallcus alkyl xanthate, R. Aust. Chem. Inst. J. Proc., 17(1950), p. 249.

    Google Scholar 

  10. B.F.G. Johnson and R.A. Walton, Coordination compounds of thallium(III): II. Some complexes of thallium (III) halides and their indium (III) analogs, Inorg. Chem., 5(1966), No. 1, p. 49.

    Article  Google Scholar 

  11. D.E. Zelmon, Z. Gebeyehu, D. Tomlin, and T.M. Cooper, Investigation of transition metal-xanthate complexes for nonlinear optical applications, Mater. Res. Soc. Symp. Proc., 519(1998), p. 395.

    Article  Google Scholar 

  12. K. Xu, W. Ding, and Y. Chen, Structure and spectral properties of (O-cyclohexyldithiocarbonatio-S,S′) bis(triphesnylphosphine) copper(I) complex, J. Chem. Crystallogr., 34(2004), No. 10, p. 665.

    Article  Google Scholar 

  13. E. Erdik, M. Obalı, N. Yüksekışık, A. Öktemer, and T. Pekel, Denel Organik Kimya, Gazi Kitapevi, 4th Ed., Gazi Publication in English Meaning, Ankara, 2007, p. 1079.

    Google Scholar 

  14. M.L. Shankaranarayana and C.C. Patel, Infrared spectra and the structures of xanthates and dixanthogens, Can. J. Chem., 39(1961), No. 8, p. 1633.

    Article  Google Scholar 

  15. D. Fornasiero, M. Montalti, and J. Ralston, Kinetics of adsorption of ethyl xanthate on pyrrhotite: in situ UV and infrared spectroscopic studies, J. Colloid Interface Sci., 172(1995), No. 2, p. 467.

    Article  Google Scholar 

  16. G.W. Watt and B.J. McCormick, The infrared spectra and structure of transition metal xanthates, Spectrochim. Acta, 21(1965), No. 4, p. 753.

    Article  Google Scholar 

  17. N. Benramdane, W.A. Murad, R.H. Misho, M. Ziane, and Z. Kebbab, A chemical method for the preparation of thin films of CdO and ZnO, Mater. Chem. Phys., 48(1997), No. 2, p. 119.

    Article  Google Scholar 

  18. U. Alver, H. Yaykaşlı, S. Kerli, and A. Tanrıverdi, Synthesis and characterization of boron-doped NiO thin films produced by spray pyrolysis, Int. J. Miner. Metall. Mater., 20(2013), No. 11, p. 1097.

    Article  Google Scholar 

  19. C.H. Zhao, B.P. Zhang, S.J. Wang, P.P. Shang, and C. Chen, Microstructure and optical absorption properties of Au/NiO thin films, Int. J. Miner. Metall. Mater., 18(2011), No. 1, p. 115.

    Article  Google Scholar 

  20. E. Márquez, J. Ramírez-Malo, P. Villares, R. Jiménez-Garay, P.J.S. Ewen, and A.E. Owen, Calculation of the thickness and optical constants of amorphous arsenic sulphide films from their transmission spectra, J. Phys. D, 25(1992), No. 3, p. 535.

    Article  Google Scholar 

  21. J.I. Pankove, Optical Processes in Semiconductors, Dover Publications Inc., New York, 1975, p. 91.

    Google Scholar 

  22. F. Yakuphanoglu, M. Sekerci, and A. Balaban, The effect of film thickness on the optical absorption edge and optical constants of the Cr(III) organic thin films, Opt. Mater., 27(2005), No. 8, p. 1369.

    Article  Google Scholar 

  23. R.J. Nussbaumer, W.R. Caseri, P. Smith, and T. Tervoort, Polymer-TiO2 nanocomposites: a route towards visually transparent broadband UV filters and high refractive index materials, Macromol. Mater. Eng., 288(2003), No. 1, p. 44.

    Article  Google Scholar 

  24. T. Negas, G. Yeager, S. Bell, N. Coats, and I. Minis, BaTi4O9/Ba2Ti9O20-based ceramics resurrected for modern microwave applications, Am. Ceram. Soc. Bull., 72(1993), No. 1, p. 80.

    Google Scholar 

  25. İ.A. Kariper and T. Özpozan, Cobalt xanthate thin film with chemical bath deposition, J. Nanomater., 2013(2013), art. No. 139864.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to İ. A. Kariper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kariper, İ.A., Özpozan, T. Optical properties of cobalt xanthate films on different substrates. Int J Miner Metall Mater 21, 736–740 (2014). https://doi.org/10.1007/s12613-014-0965-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-014-0965-y

Keywords

Navigation